Sugerencias
Compartir
Información de la revista
Visitas
252
Original Article
Acceso a texto completo
Pruebas no corregidas. Disponible online el 9 de diciembre de 2025
Evaluation of the Risk of Psoriatic Arthritis in Patients With Psoriasis Undergoing Biological Treatment. Global Population Study (TRINETX)
Visitas
252
R. Rivera-Diaza,1,
Autor para correspondencia
rriveradiaz@hotmail.com

Corresponding author.
, B. Jovenb,1, G. Hernandez-Ibarburuc, C. García-Donosoa, J.L. Pablosb, P.L. Ortiz-Romeroa
a Departamento de Dermatología, Hospital Universitario 12 de Octubre, Institute i+12, Facultad de Medicina, Universidad Complutense, Madrid, Spain
b Departamento de Reumatología, Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain
c TriNetX Europe NV, Sint-Martens-Latem, Belgium
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (4)
Mostrar másMostrar menos
Tablas (2)
Table 1. Characteristics of adjusted and matched cohorts of patients with psoriasis without arthritis initiating first-line biological treatment.
Tablas
Table 2. Characteristics of adjusted and matched cohorts of psoriatic patients without arthritis initiating second-line treatment with iIL12/23, iIL17, or iIL23 compared to those receiving first-line iTNF.
Tablas
Mostrar másMostrar menos
Abstract
Introduction

Psoriatic arthritis (PsA) is an inflammatory condition associated with psoriasis (PsO), with variable prevalence ranging from 6% to 42%. Despite the known link between PsO and PsA, reliable biomarkers for predicting PsA onset remain elusive. Recent research has identified risk determinants including obesity, onychopathy, PsO severity, and familial predisposition. Detecting PsO patients at risk of developing PsA is crucial given the disparity in treatment efficacy post-PsA establishment.

Objective

This study evaluates the rate of PsA among PsO patients undergoing targeted biologic therapy as first- or second-line therapy.

Material and methods

We conducted a retrospective cohort study utilizing TriNetX database and identified PsO patients receiving biologic therapy. Propensity score matching was applied to adjust for potential confounders. Patients were followed for 5 years, and the incidence rate of PsA was determined. Statistical analyses were performed to estimate relative risks and hazard ratios.

Results

Among 1,175,000 PsO patients, 41,990 received first-line biologic therapy. Following matching, patients initiating IL12/23i or IL23i exhibited a lower PsA incidence rate vs TNFi. Second-line IL12/23i and IL23i treatment also showed a lower PsA risk vs TNFi. IL17i did not significantly differ from TNFi in PsA risk.

Conclusion

This study highlights differential PsA risk among PsO patients on biologic therapy, suggesting potential benefits of IL12/23i and IL23i in PsA prevention. Prospective studies are needed to confirm these findings and optimize PsA prevention strategies.

Keywords:
Psoriasis
Arthritis
Biologics
Prevention
Interception
TriNetX
Texto completo
Introduction

Psoriatic arthritis (PsA) is an inflammatory arthropathy intricately linked with psoriasis (PsO). The prevalence of PsA exhibits notable variability from 6% to 42%, with an incidence rate of 2.7 per 100 patient-years.1 PsO stands as the foremost predisposing factor for PsA development, with 70–80% of PsA patients having exhibited PsO a decade prior to onset, on average.2

Despite advances in understanding the pathophysiology of PsA, identifying reliable biomarkers to predict its onset remains challenging. Zabotti et al.3 reviewed evidence on risk determinants for PsA, including obesity, onychopathy, PsO severity, and a family history of PsA. Additionally, the presence of unexplained joint pain and subclinical inflammation observed in the imaging modalities (ultrasound or magnetic resonance) can indicate a heightened risk of transitioning to PsA within a shorter timeframe, within 1–3 years.

The importance of identifying PsO patients at elevated risk of progressing to PsA arises from the observed disparity in treatment efficacy vs cutaneous signs, wherein fewer than 50% of patients achieve clinical remission once PsA has been established.4 These circumstances drive research into the feasibility of preventing PsA development or intercepting its progression.5 Given the established correlation between PsO severity and PsA risk,3 several investigations have explored the prospect of aggressive systemic therapies, such as biologic therapies, as potential preventive measures vs PsA development.1,6–13 In the current landscape, biologic therapies represent some of the most effective therapies for PsO. However, their capacity to prevent PsA onset and whether all mechanisms exert uniform effects, remain areas of active investigation.

The objective of this study was to compare the incidence of PsA among patients with PsO treated with targeted biologic agents, stratified by drug class and by use as first- or second-line therapy.

Material and methods

We conducted a retrospective cohort study and examined data from the TriNetX Global Collaborative Network that provided access to electronic health records from 120 health care organizations spread across 17 countries.14 The analysis included data from 2010 (or before) up to December of 2023, selecting patients diagnosed with PsO (ICD-10-CM code L40) on biologic drugs. Exclusion criteria included prior biologic therapy or documented history of PsA (ICD-10-CM code L40.5) before the index date. The index date, which marks the beginning of the observation, was established when the patient started the first biologic agent after the diagnosis of psoriasis. Patients with failed cohort treatment and switched to a new therapy were not included in the final analysis.

The primary endpoint was defined as PsA diagnosis during follow-up, with patients censored upon this diagnosis or at follow-up termination without PsA, whichever occurred first. Statistical analysis employed Propensity Score 1:1 Matching (PSM) to adjust for sex, time since PsO diagnosis, obesity (BMI >30), alcohol/tobacco use, onychopathy, and prior conventional disease-modifying anti-rheumatic drugs (cDMARDs) use. All eligible TriNetX patients were included. Descriptive statistics were reported for clinical characteristics. Biologics were categorized into cohorts according to their mechanism of action [TNF inhibitors (TNFi), IL12/23 inhibitors (IL12/23i), IL17 inhibitors (IL17i) and IL 23 inhibitors (IL23i)], they were followed for 5 years and cumulative PsA incidence rate was calculated. The absolute risk reduction (ARR), expressed as the number of PsA cases avoided per 1000 patients, and the relative risk (RR) comparing PsA incidence rates between cohorts were calculated. The risk of developing PsA during follow-up was expressed as hazard ratios (HR) with 95% confidence intervals (CI), using first-line TNF inhibitor (TNFi) exposure as the reference.

Furthermore, the cumulative incidence rate of PsA was evaluated among the study cohorts (IL12/23i, IL23i and IL17i) in second-line patients (patients with previously failed TNFi), comparing them with the cohort of TNFi as first-line therapy. This analysis focused on the subsequent 3 years post-index date to maintain an adequate sample size.

Additionally, comparisons between the IL23i and IL17i cohorts, both naïve and second-line therapy, were conducted.

Our hospital records are reviewed to verify the accuracy of the data.

Initial cohort comparisons utilized the chi-square test (or Fisher's exact test) for categorical variables and t-Student test (or Wilcoxon's 2-sample rank sum test) for continuous variables. Time-to-event analysis employed Kaplan–Meier curves, with HRs calculated using multivariable Cox proportional analysis and significance assessed via the log-rank test.

Statistical analysis and data management were performed using SAS 9.4 software, with significance set at p<0.05.

Results

Within the global network, 1,175,000 patients PsO were identified, of whom 928,200 had no prior diagnosis of PsA. Among this subgroup, 41,990 patients received first-line targeted biologic therapy: TNFi (24,700 patients, 58.82%), IL12/23i (6020 patients, 14.33%), IL23i (5830 patients, 13.88%), and IL17i (5440 patients, 12.95%). Following PSM, patients available for comparison with TNFi treatment were 5640 for iIL23, 5480 for IL12/23i, and 4910 for iIL17.

Table 1 illustrates the characteristics of adjusted and matched cohorts of patients with PsO initiating first-line biologic therapy who meet the selection criteria. Although patients show similarities in most variables, discrepancies in the incidence rate of liver disease and congestive heart failure are observed between the TNFi, IL12/23i, and IL17i cohorts.

Table 1.

Characteristics of adjusted and matched cohorts of patients with psoriasis without arthritis initiating first-line biological treatment.

  IL12/23i(5480)  TNFi(5480)  p-Value  IL17i(4910)  TNFi(4910)  p-Value  IL23i(5640)  TNFi(5640)  p-Value  IL23i(4730)  IL17i(4730)  p-Value 
Primary outcome events/person-years  350  530  –  460  520  –  240  600  –  200  440  – 
Cumulative incidence of arthritis, per 100 person-years  6.4  9.7  –  9.4  10.6  –  4.3  10.6  –  4.2  9.3  – 
Current age, years  49±19.2  49.9±18.8  0.007  51.2±17.0  54.5±17.3  <0.001  50.8±16.1  54.7±16.5  <0.001  51.1±16.0  51.3±16.7  0.570 
Age at index, years  44.1±18.6  43.8±18.3  0.355  48.2±16.8  48.4±16.8  0.495  48.7±16.1  48.6±16.2  0.884  48.9±16.0  48.2±16.5  0.032 
Sex
Male  2630 (48.0%)  2620 (47.8%)  0.848  2470 (50.3%)  2430 (49.5%)  0.419  2840 (50.4%)  2860 (50.7%)  0.706  2350 (49.7%)  2380 (50.3%)  0.537 
Female  2790 (50.9%)  2810 (51.3%)  0.702  2360 (48.1%)  2410 (49.1%)  0.313  2730 (48.4%)  2720 (48.2%)  0.851  2320 (49.0%)  2290 (48.4%)  0.537 
Race/ethnicity
White  3930 (71.7%)  3920 (71.5%)  0.832  3210 (65.4%)  3480 (70.9%)  <0.001  3910 (69.3%)  3890 (69.0%)  0.683  3360 (71.0%)  3110 (65.8%)  <0.001 
Black or African American  350 (6.14%)  420 (7.6%)  0.009  370 (7.5%)  390 (7.9%)  0.450  330 (5.9%)  410 (7.3%)  0.002  280 (5.9%)  350 (7.4%)  0.004 
Asian  180 (3.3%)  160 (2.9%)  0.270  250 (5.1%)  130 (2.6%)  <0.001  280 (5.0%)  150 (2.7%)  <0.001  260 (5.5%)  240 (5.1%)  0.358 
Other or not available  770 (14.1%)  760 (13.9%)  0.728  800 (16.3%)  660 (13.4%)  <0.001  670 (11.9%)  750 (13.3%)  0.023  580 (12.3%)  760 (16.1%)  <0.001 
Comorbidities before the index date
Overweight, obesity and other hyperalimentation  910 (16.6%)  880 (16.1%)  0.438  1010 (20.6%)  1010 (20.6%)  1270 (22.5%)  1250 (22.2%)  0.651  1000 (21.1%)  1000 (21.1%) 
Obesity (body-max index >30kg/m2)  1090 (19.9%)  1050 (19.1%)  0.335  1180 (24.0%)  1200 (24.4%)  0.638  1210 (21.5%)  1190 (21.1%)  0.645  1090 (23.0%)  1090 (23.0%) 
Tobacco use or tobacco use disorder  530 (9.7%)  530 (9.7%)  600 (12.2%)  570 (11.6%)  0.350  700 (12.4%)  680 (12.1%)  0.566  560 (11.8%)  570 (12.1%)  0.751 
Alcohol related disorders  170 (3.1%)  190 (3.5%)  0.283  220 (4.5%)  200 (4.1%)  0.319  270 (4.8%)  230 (4.1%)  0.067  200 (4.2%)  210 (4.4%)  0.614 
Onycholysis  50 (0.9%)  30 (0.5%)  0.024  40 (0.8%)  40 (0.8%)  60 (1.1%)  40 (0.7%)  0.045  30 (0.6%)  40 (0.8%)  0.230 
Chronic obstructive pulmonary disease  190 (3.5%)  180 (3.3%)  0.597  220 (4.5%)  230 (4.7%)  0.629  220 (3.9%)  260 (4.6%)  0.062  180 (3.8%)  220 (4.7%)  0.041 
Congestive heart failure  170 (3.1%)  120 (2.2%)  0.003  220 (4.5%)  150 (3.1%)  <0.001  230 (4.1%)  180 (3.2%)  0.012  180 (3.8%)  220 (4.7%)  0.041 
Diabetes mellitus  640 (11.7%)  630 (11.5%)  0.765  740 (15.1%)  740 (15.1%)  790 (14.0%)  870 (15.4%)  0.033  660 (14.0%)  720 (15.2%)  0.081 
Liver disease  280 (5.1%)  370 (6.8%)  <0.001  320 (6.5%)  370 (7.5%)  0.048  410 (7.3%)  420 (7.4%)  0.718  330 (7.0%)  310 (6.6%)  0.413 
Renal disease  170 (3.1%)  190 (3.5%)  0.248  170 (3.5%)  190 (3.9%)  0.283  190 (3.4%)  220 (3.9%)  0.131  160 (3.4%)  160 (3.4%) 
DMARDs before the index date
Methotrexate  650 (11.9%)  630 (11.5%)  0.552  480 (9.8%)  470 (9.6%)  0.733  450 (8.0%)  440 (7.8%)  0.727  410 (8.7%)  420 (8.9%)  0.716 
Cyclosporine  210 (3.8%)  150 (3.5%)  0.308  210 (4.3%)  200 (4.1%)  0.614  200 (3.5%)  180 (3.2%)  0.297  180 (3.8%)  170 (3.6%)  0.586 
Acitretin  170 (3.1%)  130 (2.4%)  0.019  170 (3.5%)  120 (2.4%)  0.003  130 (2.3%)  90 (1.6%)  0.006  130 (2.7%)  130 (2.7%) 
Apremilast  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
Upadacitinib  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
Tofacitinib  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
Deucravacitinib  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
DMARDb after the index date
TNF inhibitor
Adalimumab  0 (0%)  3450 (63.0%)  <0.001  0 (0%)  3190 (65.0%)  <0.001  0 (0%)  3710 (65.8%)  <0.001  0 (0%)  0 (0%)  – 
Etanercept  0 (0%)  1340 (24.5%)  <0.001  0 (0%)  1150 (23.4%)  <0.001  0 (0%)  1270 (22.5%)  <0.001  0 (0%)  0 (0%)  – 
Infliximab  0 (0%)  810 (14.8%)  <0.001  0 (0%)  630 (12.8%)  <0.001  0 (0%)  710 (12.6%)  <0.001  0 (0%)  0 (0%)  – 
Certolizumab  0 (0%)  120 (2.2%)  <0.001  0 (0%)  120 (2.4%)  <0.001  0 (0%)  140 (2.5%)  <0.001  0 (0%)  0 (0%)  – 
Golimumab  0 (0%)  70 (1.3%)  <0.001  0 (0%)  80 (1.6%)  <0.001  0 (0%)  80 (1.4%)  <0.001  0 (0%)  0 (0%)  – 
IL12/23 inhibitor
Ustekinumab  5480 (100%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
IL17 inhibitor
Secukinumab  0 (0%)  0 (0%)  –  2750 (56.0%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  2670 (56.4%)  <0.001 
Ixekizumab  0 (0%)  0 (0%)  –  2160 (44.0%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  2070 (43.8%)  <0.001 
Brodalumab  0 (0%)  0 (0%)  –  70 (1.4%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  70 (1.5%)  <0.001 
IL23 inhibitor
Guselkumab  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  2130 (37.8%)  0 (0%)  <0.001  1790 (37.8%)  0 (0%)  <0.001 
Tildrakizumab  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  210 (3.7%)  0 (0%)  <0.001  190 (4.0%)  0 (0%)  <0.001 
Risankizumab  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  3330 (59.0%)  0 (0%)  <0.001  2780 (58.8%)  0 (0%)  <0.001 

Regarding the onset of PsA cases, naïve patients treated with IL12/23i and IL23i demonstrated lower PsA incidence compared to TNFi, with a RR of 0.66 (0.58–0.75) and 0.40 (0.35–0.46), an ARR of 64 and 33 cases of PsA avoided/1000 patients and HR 0.678 (0.593, 0.777) and 0.579 (0.496, 0.657 respectively. Conversely, the difference in PsA incidence between IL17i and TNFi was not significant (Figs. 1a and 2).

Fig. 1.

Forest plot depicting adjusted HRs for time to psoriatic arthritis for patients with psoriasis without arthritis initiating some first-line biologic therapy (a), patients with psoriasis without arthritis initiating treatment with IL12/23i, IL17i, or IL23i as second-line therapy vs those on TNFi as first-line therapy (b) and patients with psoriasis without arthritis initiating treatment with IL17i and IL23i as both first- and second-line therapies.

Fig. 2.

Time to psoriatic arthritis among patients with psoriasis without arthritis initiating some first-line biologic therapy. RR: relative risk; ARR: absolute risk reduction.

Regarding the onset of PsA, biologic-naïve patients treated with IL12/23 inhibitors (IL12/23i) or IL23 inhibitors (IL23i) demonstrated a lower rate of PsA vs those on TNF inhibitors (TNFi), with relative risks (RR) of 0.66 (95% CI, 0.58–0.75) and 0.40 (95% CI, 0.35–0.46), respectively. The corresponding ARRs were 64 and 33 PsA cases avoided per 1000 patients, and HR were 0.678 (95% CI, 0.593–0.777) and 0.579 (95% CI, 0.496–0.657), respectively. Conversely, the difference in PsA incidence between IL17i and TNFi was not statistically significant (Figs. 1a and 2).

Table 2 illustrates the characteristics of cohorts of PsO patients without arthritis initiating second-line therapy with IL12/23i, IL17i, or IL23i vs those on first-line TNFi. No significant differences were detected in baseline characteristics across these groups. The incidence rate of new cases of PsA during a 3-year follow-up was also lower in the IL12/23i and IL23i groups vs the TNFi group, with RR of 0.76 (0.62–0.93) and 0.60 (0.44–0.82), an ARR of 19 and 40 cases avoided/1000 patients and HR of 0.696 (0.565, 0.857) and 0.708 (0.506, 0.991), respectively (Figs. 1b and 3). This differentiation was not observed in the group of patients on iIL17, in which the risk of developing PsA was higher vs TNFi as first-line therapy (Fig. 3), with HR of 1.2 (1.039, 1.601).

Table 2.

Characteristics of adjusted and matched cohorts of psoriatic patients without arthritis initiating second-line treatment with iIL12/23, iIL17, or iIL23 compared to those receiving first-line iTNF.

  IL12/23i(2580)  TNFi(2580)  p-Value  IL17i(1700)  TNFi(1700)  p-Value  IL23i(1010)  TNFi(1010)  p-Value  IL23i(1010)  IL17i(1010)  p-Value 
Primary outcome events/person-years  160  210  –  180  160  –  60  100  –  60  110  – 
Cumulative incidence of arthritis, per 100 person-years  6.2  8.1  –  10.6  9.4  –  5.9  9.9  –  5.0  10.9  – 
Current Age, years  44.8±18.8  45.8±18.7  0.058  50.7±16.5  53.5±16.7  <0.001  50.3±15.1  54.4±16.0  <0.001  50.3±15.1  51.0±16.3  0.330 
Age at index, years  39.7±18.0  39.6±17.9  0.857  47.0±16.1  47.4±16.1  0.467  47.8±15.1  48.1±15.4  0.599  47.8±15.1  47.2±16.0  0.382 
Sex
Male  1110 (43.0%)  1100 (42.6%)  0.778  770 (45.3%)  780 (45.9%)  0.731  520 (51.5%)  520 (51.5%)  520 (51.5%)  510 (50.5%)  0.656 
Female  1450 (56.2%)  1470 (57.0%)  0.574  920 (54.1%)  920 (54.1%)  490 (48.5%)  490 (48.5%)  490 (48.5%)  500 (49.5%)  0.656 
Race/ethnicity
White  1930 (74.8%)  1880 (72.9%)  0.113  1190 (70.0%)  1260 (74.1%)  0.007  740 (73.3%)  740 (73.3%)  740 (73.3%)  720 (71.3%)  0.320 
Black or African American  210 (8.1%)  220 (8.5%)  0.614  140 (8.2%)  140 (8.2%)  70 (6.9%)  80 (7.9%)  0.396  70 (6.9%)  80 (7.9%)  0.396 
Asian  60 (2.3%)  80 (3.1%)  0.087  70 (4.1%)  50 (2.9%)  0.063  60 (5.9%)  40 (4.0%)  0.281  60 (5.9%)  50 (5.0%)  0.327 
Other or not available  280 (10.9%)  330 (12.8%)  0.031  220 (12.9%)  200 (11.8%)  0.297  110 (10.9%)  140 (13.9%)  0.043  110 (10.9%)  140 (13.9%)  0.043 
Comorbidities before the index date
Overweight, obesity and other hyperalimentation  530 (20.5%)  530 (20.5%)  480 (28.2%)  500 (29.4%)  0.449  280 (27.7%)  300 (29.7%)  0.325  280 (27.7%)  270 (26.7%)  0.617 
Obesity (body-max index >30kg/m2)  1270 (49.2%)  1220 (47.3%)  0.040  490 (28.8%)  520 (30.6%)  0.260  220 (21.8%)  220 (21.8%)  220 (21.8%)  210 (20.8%)  0.587 
Tobacco use or tobacco use disorder  370 (14.3%)  340 (13.2%)  0.225  310 (18.2%)  310 (18.2%)  160 (15.8%)  160 (15.8%)  160 (15.8%)  150 (14.9%)  0.027 
Alcohol related disorders  80 (3.1%)  60 (2.3%)  0.087  110 (6.5%)  110 (6.5%)  60 (5.9%)  60 (5.9%)  60 (5.9%)  60 (5.9%) 
Onycholysis  40 (1.6%)  30 (1.2%)  0.229  30 (1.8%)  10 (0.6%)  0.001  20 (2.0%)  20 (2.0%)  20 (2.0%)  10 (1.0%)  0.066 
Chronic obstructive pulmonary disease  80 (3.1%)  90 (3.5%)  0.435  90 (5.3%)  90 (5.3%)  40 (4.0%)  40 (4.0%)  40 (4.0%)  50 (5.0%)  0.281 
Congestive heart failure  70 (2.7%)  60 (2.3%)  0.374  50 (2.9%)  60 (3.5%)  0.332  30 (3.0%)  40 (4.0%)  0.224  30 (3.0%)  30 (3.0%) 
Diabetes mellitus  260 (10.1%)  310 (12.0%)  0.026  300 (17.6%)  300 (17.6%)  160 (15.8%)  180 (17.8%)  0.234  160 (15.8%)  160 (15.8%) 
Liver disease  230 (8.9%)  170 (6.6%)  0.002  160 (9.4%)  160 (9.4%)  100 (9.9%)  100 (9.9%)  100 (9.9%)  90 (8.9%)  0.446 
Renal disease  120 (4.7%)  90 (3.5%)  0.035  80 (4.7%)  80 (4.7%)  50 (5.0%)  50 (5.0%)  50 (5.0%)  40 (4.0%)  0.281 
DMARDs before the index date
Methotrexate  780 (30.2%)  790 (30.6%)  0.762  440 (25.9%)  440 (25.9%)  220 (21.8%)  200 (19.8%)  0.273  220 (21.8%)  220 (21.8%) 
Cyclosporine  150 (5.8%)  140 (5.4%)  0.546  100 (7.1%)  100 (5.9%)  0.163  50 (5.0%)  40 (4.0%)  0.281  50 (5.0%)  50 (5.0%) 
Acitretin  150 (5.8%)  140 (5.4%)  0.546  90 (5.3%)  90 (5.3%)  60 (5.9%)  50 (5.0%)  0.327  60 (5.9%)  60 (5.9%) 
Apremilast  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
Upadacitinib  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
Tofacitinib  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
Deucravacitinib  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
DMARDb after the index date
TNF inhibitor
Adalimumab  1700 (65.9%)  1620 (62.8%)  0.020  1370 (80.6%)  1140 (67.1%)  <0.001  840 (83.2%)  660 (65.3%)  <0.001  840 (83.2%)  830 (82.2%)  0.557 
Etanercept  710 (27.5%)  630 (24.4%)  0.011  430 (25.3%)  390 (22.9%)  0.109  210 (20.8%)  240 (23.8%)  0.109  210 (20.8%)  250 (24.8%)  0.034 
Infliximab  660 (25.6%)  430 (16.7%)  <0.001  100 (5.9%)  250 (4.7%)  <0.001  40 (4.0%)  130 (12.9%)  <0.001  40 (4.0%)  60 (5.9%)  0.040 
Certolizumab  170 (6.6%)  70 (2.7%)  <0.001  50 (2.9%)  40 (2.4%)  0.285  40 (4.0%)  20 (2.0%)  0.009  40 (4.0%)  30 (3.0%)  0.224 
Golimumab  30 (1.2%)  40 (1.6%)  0.229  40 (2.4%)  20 (1.2%)  0.009  10 (1.0%)  20 (2.0%)  0.066  10 (1.0%)  30 (3.0%)  0.001 
IL12/23 inhibitor
Ustekinumab  2580 (100%)  0 (0%)  <0.001  0 (0%)  0 (0%)  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  – 
IL17 inhibitor
Secukinumab  0 (0%)  0 (0%)  –  1060 (62.4%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  630 (62.4%)  <0.001 
Ixekizumab  0 (0%)  0 (0%)  –  650 (38.2%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  390 (38.6%)  <0.001 
Brodalumab  0 (0%)  0 (0%)  –  20 (1.2%)  0 (0%)  <0.001  0 (0%)  0 (0%)  –  0 (0%)  10 (1.0%)  <0.001 
IL23 inhibitor
Guselkumab  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  340 (33.7%)  0 (0%)  <0.001  340 (33.7%)  0 (0%)  <0.001 
Tildrakizumab  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  40 (4.0%)  0 (0%)  <0.001  40 (4.0%)  0 (0%)  <0.001 
Risankizumab  0 (0%)  0 (0%)  –  0 (0%)  0 (0%)  –  650 (64.4%)  0 (0%)  <0.001  640 (63.4%)  0 (0%)  <0.001 
Fig. 3.

Time to psoriatic arthritis among patients with psoriasis without arthritis initiating treatment with IL12/23i, IL17i, or IL23i as second-line therapy vs those on TNFi as first-line therapy. RR: relative risk; ARR: absolute risk reduction.

Furthermore, the incidence rate of PsA was compared between the IL17i and IL23i cohorts in both first- and second-line therapies. It was observed that the risk of developing PsA was significantly lower with IL23i than with IL17i in both therapy lines (Figs. 1c and 4).

Fig. 4.

Time to psoriatic arthritis among patients with psoriasis without arthritis initiating treatment with IL17i and IL23i as both first- and second-line therapy. RR: relative risk; ARR: absolute risk reduction.

All reviewed records had a correct diagnosis and treatment. The only error detected is in the treatment line: 13-15% records were actually posterior lines.

Discussion

Our investigation revealed a reduced risk of PsA development associated with IL12/23i and IL23i vs TNFi. Conversely, IL17i did not exhibit a significant difference in PsA risk compared to TNFi.

Although these findings are consistent with those reported by Singla et al.,12 in a U.S. cohort, our study cohort is substantially larger. While they primarily investigated inflammatory arthritis in adult psoriatic patients initiating biologic therapy, including PsA in some sensitivity analyses, our study focused on patients diagnosed with PsO without arthritis initiating biologic therapy for the first time. We compared the risk of developing PsA across different classes of biologics, after adjusting for risk factors such as sex, time since PsO onset, obesity (BMI >30), alcohol/tobacco abuse, nail psoriasis, and cDMARDs.

Another single-center study with 1023 patients found no significant differences in PsA prevalence among different biologic classes. However, PsA was numerically lower in patients on IL17i (1.9%) and IL23i or IL12/23i (6.1%) vs TNFi (8.8%).13

Moreover, our investigation extended also to PsO patients without arthritis who initiated IL12/23i, IL17i, or IL23i as second-line therapy, contrasting them with individuals with TNFi as first-line. This methodological approach aligns more closely with real-world clinical practices, in regions such as Spain, where the public health system recommends initiating therapy with TNFi biosimilars for the management of moderate-to-severe PsO cases requiring biologic therapy. Even in the second-line scenario, we observed a diminished risk of developing PsA with IL12/23i and IL23i vs TNFi 3 years after starting first-line therapy.

These findings are consistent with the established understanding of IL23 in the pathogenesis of enthesitis, which marks the onset of PsA15; perhaps once activated, other pathways of immunity explain why IL17i or TNFi are more effective than IL12/23i and IL23i in established PsA with a high inflammatory burden, especially in axial forms.

This study has several limitations, primarily related to its observational and retrospective design, which limits the ability to establish causal relationships and necessitates cautious interpretation of the findings, as they are primarily hypothesis-generating. Potential inaccuracies in diagnostic coding and biases in the selection of biologic therapies may also be present within the dataset. In particular, protopathic bias – whereby treatment is initiated in patients with early or subclinical PsA before a formal diagnosis – is possible and may have led to an overestimation of the observed associations. Despite these limitations, the study has notable strengths. It represents one of the largest and longest investigations of patients with psoriasis treated with biologic agents, thereby providing valuable insights and contributing substantially to the existing body of evidence in this field.

Prospective studies are needed to determine whether treatment strategies for patients with psoriasis aimed at preventing PsA onset should differ from those used once PsA is established. In other words, should prevention and interception of PsA be managed in the same way?

Conflicts of interest

Raquel Rivera acted as a consultant and/or speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of psoriasis, including Abbvie, Almirall, Amgen, Boehringer Ingelheim, Bristol Myers Squibb, Incyte, Johnson & Johnson, Leo Pharma, Lilly, Novartis, Pfizer and UCB.

Carmen García-Donoso acted as a consultant and/or speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of psoriasis, including Abbvie, Almirall, Amgen, Bristol Myers Squibb, Johnson & Johnson, Leo Pharma, Lilly, Novartis and UCB.

Beatriz Joven collaborated as a consultant, speaker for Amgen, UCB, Abbvie, Johnson & Johnson, Novartis, Lilly and has participated as a researcher in Abbvie, Johnson & Johnson, Novartis, Lilly, Bristol Myers Squibb trials/studies.

Jose Luis Pablos collaborated as a consultant, speaker for Amgen, UCB, Abbvie, Johnson & Johnson, Novartis, Lilly and has participated as a researcher in Abbvie, Johnson & Johnson, Novartis, Lilly, Bristol Myers Squibb trials/studies.

Gema Hernandez-Ibarburu and Pablo L. Ortiz-Romero declared no conflicts of interest regarding this manuscript.

References
[1]
M.L. Acosta Felquer, L. LoGiudice, M.L. Galimberti, J. Rosa, L. Mazzuoccolo, E.R. Soriano.
Treating the skin with biologics in patients with psoriasis decreases the incidence of psoriatic arthritis.
Ann Rheum Dis, 81 (2022), pp. 74-79
[2]
I. Belinchón, L. Salgado-Boquete, A. López-Ferrer, et al.
Dermatologists’ role in the early diagnosis of psoriatic arthritis: expert recommendations.
Actas Dermosifiliogr, 111 (2020), pp. 835-846
[3]
A. Zabotti, G. De Marco, L. Gossec, et al.
EULAR points to consider for the definition of clinical and imaging features suspicious for progression from psoriasis to psoriatic arthritis.
Ann Rheum Dis, 82 (2023), pp. 1162-1170
[4]
I. McInnes, L. Sawyer, K. Markus.
Targeted systemic therapies for psoriatic arthritis: a systematic review and comparative synthesis of short-term articular, dermatological, enthesitis and dactylitis outcomes.
RMD Open, 8 (2022),
[5]
A. Green, G. Shaddick, R. Charlton, et al.
Modifiable risk factors and the development of psoriatic arthritis in people with psoriasis.
Br J Dermatol, 182 (2020), pp. 714-720
[6]
P. Gisondi, F. Bellinato, G. Targher, L. Idolazzi, G. Girolomoni.
Biological disease-modifying antirheumatic drugs may mitigate the risk of psoriatic arthritis in patients with chronic plaque psoriasis.
Ann Rheum Dis, 81 (2022), pp. 68-73
[7]
Y.S. Rosenthal, N. Schwartz, I. Sagy, L. Pavlovsky.
Incidence of psoriatic arthritis among patients receiving biologic treatments for psoriasis: a nested case–control study.
Arthritis Rheumatol, 74 (2022), pp. 237-243
[8]
M. Loredo, I. Braña, R. Queiro.
Does pharmacological intervention prevent or delay the onset of psoriatic arthritis among psoriasis patients?.
Expert Opin Biol Ther, 23 (2023), pp. 1159-1162
[9]
M. Koehm, F. Behrens.
Association between biological immunotherapy for psoriasis and time to incident inflammatory arthritis: limitations and opportunities.
RMD Open, 9 (2023), pp. e003166
[10]
E. Meer, J.F. Merola, R. Fitzsimmons, et al.
Does biologic therapy impact the development of PsA among patients with psoriasis?.
Ann Rheum Dis, 81 (2022), pp. 80-86
[11]
A. Ogdie, T. Love, J. Takeshita, et al.
FRI0355 impact of biologic therapy on the incidence of PSA among patients with psoriasis.
Ann Rheum Dis, 79 (2020), pp. 773.1-774
[12]
S. Singla, M. Putman, J. Liew, K. Gordon.
Association between biological immunotherapy for psoriasis and time to incident inflammatory arthritis: a retrospective cohort study.
Lancet Rheumatol, 5 (2023), pp. e200-e207
[13]
A. Floris, C. Mugheddu, L. Sichi, et al.
Treatment of psoriasis with different classes of biologics reduces the likelihood of peripheral and axial psoriatic arthritis development.
Rheumatology, (2024), pp. 1-7
[15]
Z. Łukasik, E. Gracey, K. Venken, C. Ritchlin, D. Elewaut.
Crossing the boundaries: IL-23 and its role in linking inflammation of the skin, gut and joints.
Rheumatology (Oxford), 60 (2021), pp. iv16-iv27

These authors equally contributed as first authors.

Copyright © 2025. AEDV
Descargar PDF
Idiomas
Actas Dermo-Sifiliográficas
Opciones de artículo
Herramientas