the studied cases, as in other histiocytic disorders such as juvenile xanthogranuloma.

The prognosis of CRDD is generally favorable and many cases resolve spontaneously. Numerous treatments—including topical and systemic corticosteroids, thalidomide, dapsone, retinoids, cryotherapy, and radiation therapy—have been used, all with variable efficacy. In refractory cases, vincristine and imatinib have shown very good results. A recent case was treated with low-dose methotrexate, with good response. Surgical removal can be justified in localized cases.

We present a new case of facial CRDD; it is important to consider this entity in the differential diagnosis of facial lesions with a granulomatous appearance in order to avoid diagnostic delays, so that treatment can be started if necessary.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank Dr. Santiago Montes and the team of Dr. M.A. Piris from Hospital Universitario Marqués de Valdecilla (Santander) for their collaboration on the diagnosis.

References

M.A. Flores-Terry, a, b G. Romero-Aguilera, a L. González-López, a b M. García-Arpa a b

a Servicio de Dermatología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
b Servicio de Dermatología y Servicio de Anatomía Patológica, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain

c Corresponding author.
E-mail address: migueterry85@hotmail.com (M.A. Flores-Terry).
1578-2190/ © 2016 Elsevier España, S.L.U. and AEDV. All rights reserved.

Proximal Subungual Onychomycosis Due to Aspergillus niger: A Simulator of Subungual Malignant Melanoma

Oxicomicosis subungueal proximal por Aspergillus niger: un simulador de melanoma maligno subungueal

To the Editor:

The majority of onychomycoses are caused by dermatophytic fungi or yeasts; those due to nondermatophyte molds account for approximately 10% worldwide, with different sources reporting between 1.45% and 17.6%. However, numerous nondermatophyte filamentous fungi are often isolated as commensals from pathologic nails, mainly from the toenails of persons of advanced age. A 64-year-old woman with diabetes mellitus consulted for a 2-month history of discoloration of the nail and nail bed of her left great toe. She denied trauma but did describe a previous episode of periungual inflammation.

Physical examination revealed onycholysis and onychomadesis with black discoloration of the proximal nail bed and marked dystrophy of the nail plate (Fig. 1A). Hutchinson sign was negative and dermoscopy did not reveal a micro-Hutchinson sign.

The differential diagnosis included subungal melanoma and infection, and microbiology examination of the nail was therefore requested. Culture was positive for Aspergillus niger (Fig. 2), and the search for dermatophytes and bacterial culture was negative. Based on these findings, we made a diagnosis of proximal subungual onychomycosis due to A. niger. Treatment was started with 40% urea and bifonazole.
cream under an occlusive dressing, leading to a progressive clinical improvement. At 5 months the pigmentation had practically disappeared, leaving a residual partial anonychia (Fig. 1B); cultures were negative.

Onychomyasis due to nondermatophyte molds is difficult to diagnose, as these organisms are common contaminants of diseased nails. In contrast to the dermatophytes, Aspergillus spp. is a nonkerotaphilic fungus that usually causes secondary infection in nails damaged by trauma or previous disease. However, both Aspergillus and other molds are an emerging cause of onychomycosis, mainly affecting the toenails of diabetic patients. The apparent increase in the incidence of this type of infection could be due to aging of the population, better diagnostic techniques, or increased awareness of the pathogenic capacity of these organisms. Other nondermatophyte filamentous fungi associated with nail disease include Scopulariopsis brevicaulis, Acremonium spp., and Fusarium spp.

The clinical presentation of onychomycosis due to molds can be very variable, and the diagnosis cannot be established on clinical criteria alone. In the literature, it has been indicated that A. niger can be associated with periungual inflammation, brown-to-black pigmentation, or even striate melanonychia.

Melanonychia of fungal origin with brown or black pigmentation of the nail unit is relatively rare and can mimic subungual melanoma (Table 1). It is more common in men, in older adults, and in the toenails. The majority of cases are due to dematiaceous or melanin-producing fungi, with the most common being Scytalidium dimidiatum and Alternaria spp. A. niger is a nondermatophyte fungus, whose dark color is due to aspergillin pigment, which can make the nail and proximal nail fold dark brown or black.

The diagnostic criteria of onychomycosis due to nondermatophyte molds are not well-established. In general, major criteria suggest the pathogenic nature of the nondermatophyte fungus (observation on direct examination, positive culture, repeated isolation, inoculum count, the exclusion of dermatophyte fungi, and histology), with 3 criteria being necessary to exclude simple colonization. Our patient satisfied 2 criteria (positive culture and the exclusion of a dermatophyte), but histology and the inoculum count were not performed. The very characteristic melanonychia was suggestive of A. niger as the causative agent.

The differential diagnosis of fungal melanonychia should include subungual hematomas, racial pigmentation, drug-induced melanonychia, exogenous pigmentation, and melanocyte hyperplasia, including subungual melanoma.

The treatment of onychomycosis due to molds is often unsatisfactory. The onychomycoses associated with global nail pigmentation are considered difficult to treat. A. niger, on the other hand, has shown a good response to topical ciclopirox, oral terbinafine, and oral itraconazole. Photodynamic therapy with methyl aminolevulinate and other photosensitizers has also been shown to be effective.
in the treatment of some nondermatophyte molds, and can be considered in cases with a poor response to conventional treatments, but the presence of pigment, as in our case, could affect efficacy.

In conclusion, we have presented a case of proximal subungual onychomycosis due to *A. niger*. Despite its low frequency, its characteristic clinical presentation means this infectious agent must be taken into account in the differential diagnosis of pigmented nail dystrophy. In these cases, the differential diagnosis should always include malignant melanoma, and biopsy should be considered in case of doubt.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Late Xanthomatous Pseudotumor Following Treatment for Breast Cancer

Seudotumor xantomatoso diferido tras tratamiento de cáncer de mama

To the Editor:

Radiation therapy is well known to cause both acute and chronic changes in irradiated skin. Isolated cases of immediate xanthomatous changes following radiotherapy or chemotherapy have been described in association with certain tumors and with inflammatory disorders such as herpes zoster infection and mosquito bites.

We present the case of an 83-year-old woman with a history of diabetes mellitus, dyslipidemia, chronic kidney failure, Parkinson disease, and left breast cancer treated with breast-conserving surgery with axillary lymph node dissection, radiotherapy, and chemotherapy in 2008. The patient was referred to our department for assessment of an asymptomatic yellowish plaque of 6 months’ duration on the left breast. The physical examination showed a large yellow-brown plaque that was slightly hard to the touch and had a verrucous, papilliform surface surrounded by an erythematous halo. The plaque had well-delimited borders and a peculiar geometric shape. There was no evidence of inflammation or local infection (Fig. 1). No other relevant findings were observed in the examination.

A skin biopsy was performed to investigate the suspected diagnoses of tumor recurrence, xanthogranulomatous mastitis, and radiation-induced xanthomatous changes. The histopathologic findings showed a thinned epidermis with flattened rete ridges, an infiltrate consisting of numerous clusters of foamy histiocytes interspersed with inflammatory cells in the superficial dermis, and discrete inflammatory interstitial infiltrates in the deep dermis (Fig. 2). There were no signs suggestive of malignancy. The xanthoma-like cells were positive for CD68 and negative for cytokeratins in the immunohistochemical study. Results of a complete blood count, chest radiograph, and abdominal ultrasound were unremarkable.

A diagnosis of delayed xanthomatous pseudotumor secondary to chemotherapy and radiotherapy was established. The general criteria for diagnosing radiation-induced tumors include histologic confirmation of a tumor in the irradiated area, a period of latency between exposure to radiation and development of the tumor, and exclusion of a tumor before radiotherapy.¹

Few cases of xanthomatous transformation have been reported in patients with tumors treated by radiotherapy and/or chemotherapy, and most have involved B-cell lymphomas (Table 1).²⁻⁹

These inflammatory pseudotumors are an enigmatic entity and appear to be due to a localized inflammatory process mediated by inadequate production of cytokines. Several terms have been proposed to describe formations of xanthomatous cells that appear after radiotherapy and/or chemotherapy, including postchemotherapy histocyte-rich pseudotumor, xanthomatous pseudotumor, and benign histiocytic proliferation with xanthomatous changes.²⁻⁵,⁷⁻⁹

Despite the few cases published, it has been hypothesized that these xanthomatous cells may be histiocytes that survived the chemotherapy or radiotherapy or histiocytes from peripheral blood that engulf necrotic fat debris released by destroyed tumor cells and become xanthomatous cells.¹⁻³,⁵⁻⁷⁻⁹ It is plausible that chemotactic substances released in response to the tumor necrosis trigger the recruitment of monocytes, which then differentiate into histiocytes. These, in turn, would be activated, increase in size, and trigger the release of more chemokines, leading to the recruitment of additional monocytes and a considerable accumulation of histiocytes in response to the tumor necrosis.¹ This process does not appear to be

Figure 1 Yellowish plaque with a verrucous, papilliform surface surrounded by an erythematous halo on the left breast.