Periungual Bowenoid Papulosis Due to Human Papillomavirus Type 42

Papulosis bowenoide periungueal por virus del papiloma humano 42
To the Editor:

A 28-year-old man with no relevant past medical history consulted for a progressive, slow-growing exophytic lesion at the edge of the nail of the middle finger on the left hand. The lesion had been present for 2 years. The patient reported that he had had multiple sexual partners up to 6 years earlier.

Physical examination revealed a red-grayish exophytic periungual lesion measuring 0.7 cm in diameter with a hyperkeratotic surface (Fig. 1). Histopathologic examination showed a hyperplastic epidermis with loss of normal cell architecture, moderate cellular atypia, dyskeratosis, and koilocytes in the epidermis (Fig. 2). Overexpression of the tumor suppressor protein p16 was also observed (Fig. 3). Based on a diagnosis of extragenital Bowenoid papulosis, the patient was re-questioned, but he reported that neither he nor his current partner had had genital or anal warts. Lymphocyte counts (including CD4 and CD8 counts) were normal and serologic testing for human immunodeficiency virus (HIV) was negative. Human papillomavirus (HPV) DNA testing using the hybrid capture assay detected HPV 42. It was decided to excise the entire lesion and schedule periodic follow-up visits for the patient and his partner. The patient was asymptomatic a year after diagnosis.

The term Bowenoid papulosis was introduced to describe multiple wart-like papules in the genital region that are histologically similar to Bowen disease and clinically similar to genital warts. The condition typically affects young, sexually active individuals and mainly involves the genital, perianal, and perianal regions. However, there have also been reports of extragenital Bowenoid papulosis with or without concomitant genital lesions in both immunocompetent and immunodeficient patients.1

Bowenoid papulosis is associated with HPV infection. While there is a close link with HPV 16 infection, types 18, 31-35, 39, 42, 48, and 51-54 have also been implicated.1-4

HPV 16, 18, and 33 are considered to have the greatest oncogenic potential.

Bowenoid papulosis is considered to be a squamous cell carcinoma in situ and has an estimated risk of malignant transformation of 2.6%.5 The oncogenic mechanism is probably initiated by HPV-induced genetic changes in infected cells. High-risk serotypes produce HPV oncoproteins E6 and E7, which are capable of inactivating the Rb and p53 tumor suppressor proteins, respectively, giving rise to uncontrolled cell proliferation.7 HPV has been detected in Bowenoid papulosis lesions and adjacent healthy skin, indicating that HPV infection is a necessary but not sufficient factor in the development of Bowenoid papulosis. Other alterations, such as additional genetic mutations in the host cell, may be necessary.5,4

Bowenoid papulosis is histologically similar to Bowen disease, but exhibits more focal and less intense changes.1,5,6 To distinguish between the 2 entities, it is always necessary to correlate clinical and histologic findings.

Figure 2 Hypoplastic epidermis with loss of normal cell architecture, moderate cellular atypia, dyskeratosis, and koilocytes (hematoxylin-eosin, original magnification ×40).

Figure 1 Red-grayish exophytic periungual lesion with a hyperkeratotic surface.

Please cite this article as: Gómez Vázquez M, Navarra Amayuelas R. Papulosis bowenoide periungueal por virus del papiloma humano 42. Actas Dermosifiliogr. 2013;104:932–934.
progressing to chronic or malignant forms and others spontaneously regressing. Conservative treatment involving destruction of the lesions by simple excision, electrocoagulation, or cryosurgery is the most effective therapeutic approach.6,8

Bowenoid papulosis generally occurs with concomitant genital lesions or in patients with a history of HPV-induced lesions6-10 (Table 1). Transmission is believed to occur through direct contact, autoinoculation, or fomites.1,2,7,9 These transmission mechanisms would explain the involvement of different parts of the body. Reports in the literature describe lesions affecting the neck, the abdomen, the shoulder, the chin, and the periungual area, among others.1-10

We have reported a new case of Bowenoid papulosis affecting the periungual area of a finger in a patient with no past or present history of genital lesions. Two similar cases of extragenital Bowenoid papulosis have been reported in the literature. One of the patients had Bowenoid papulosis lesions in the perianal area that were detected on diagnosis of the nail lesion10 and the other patient had HIV infection.8 We believe that lesions in young sexually active patients should be examined histologically, even when they are located at a distance from the genital region. The possibility of immunosuppressive conditions should be investigated, as should the presence of genital lesions in the patients and their partners.

Table 1 A Selection of Published Cases of Extragential Bowenoid Papulosis.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Immunodeficiency</th>
<th>Site</th>
<th>HPV Detected</th>
<th>Transmission</th>
<th>Genital Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bart5</td>
<td>Not known</td>
<td>Chin</td>
<td>Not tested</td>
<td>HPV 16</td>
<td>Not known</td>
</tr>
<tr>
<td>Grussendorf-Conen6</td>
<td>No</td>
<td>Neck</td>
<td>HPV 35</td>
<td>Direct contact</td>
<td>No</td>
</tr>
<tr>
<td>Rüdlinger et al.3</td>
<td>No</td>
<td>Periungual</td>
<td>HPV 16</td>
<td>Razor</td>
<td>No</td>
</tr>
<tr>
<td>Grob et al.7</td>
<td>No</td>
<td>Neck</td>
<td>42</td>
<td>Razor</td>
<td>No</td>
</tr>
<tr>
<td>Johnson et al.1</td>
<td>No</td>
<td>Neck</td>
<td>HPV 31, 33, 35</td>
<td>Razor</td>
<td>Yes (in the past)</td>
</tr>
<tr>
<td>Fader et al.2</td>
<td>HIV</td>
<td>Neck</td>
<td>18</td>
<td>Razor</td>
<td>No</td>
</tr>
<tr>
<td>Baron et al.9</td>
<td>Idiopathic CD4+ lymphocytopenia</td>
<td>Finger</td>
<td>18</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Purnell et al.10</td>
<td>No</td>
<td>Shoulder</td>
<td>6, 1, 42, 43, 44</td>
<td>Tinea pedis</td>
<td>No</td>
</tr>
<tr>
<td>Papadopoulos et al.4</td>
<td>No</td>
<td>Abdomen</td>
<td>Not identified</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Oh et al.8</td>
<td>No</td>
<td>Toe webs</td>
<td>16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Our case</td>
<td>No</td>
<td>Periungual</td>
<td>42</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: HIV, human immunodeficiency virus; HPV, human papillomavirus.
Extensive Bowenoid Papulosis of the Vulva Treated by Carbon Dioxide Laser in a Patient With AIDS

Tratamiento con láser de dióxido de carbono de una papulosis bowenoides vulvar extensa en paciente con sida

To the Editor:

Bowenoid papulosis of the genitalia in immunocompromised patients is associated with a high risk of recurrence and transformation to infiltrating squamous cell carcinoma on the one hand, and poor response to treatment on the other. We describe the case of a 50-year-old female smoker diagnosed with human immunodeficiency virus (HIV) infection in 1989 and invasive cervical cancer in 2000. She also had chronic hepatitis C infection complicated by cirrhosis. She had had histopathologically confirmed Bowenoid papulosis since 2004. Treatments had included electrocoagulation, cryotherapy, podophyllin resin, as well as imiquimod, but with poor response and tolerance.

When the patient first visited our hospital in March 2005, she had a brownish plaque with well-defined borders and a verrucous surface covering almost the entire area of the external genitalia and the perianal area (Fig. 1A). A new biopsy confirmed the diagnosis of Bowenoid papulosis. In December 2005, we decided to administer continuous-wave carbon dioxide (CO2) laser therapy at a power of 7.5 W to treat the affected area and the acetowhite lesions identified; a lateral safety margin of 4 to 5 mm was also treated due to the possible presence of subclinical human papillomavirus (HPV) infection. The procedure was performed with the patient under epidural anesthesia. The treated areas were subsequently cleaned and dressed with an antibiotic ointment, and prophylactic valacyclovir was prescribed at a dose of 500 mg every 8 h until complete reepithelialization. Total clinical resolution of the lesions was observed at 1 month. The patient underwent follow-up examinations every 3 to 6 months, in addition to 4 treatment sessions with the same anesthesia, fluence, and postoperative care in October 2006, December 2007, April 2009, and June 2009. Complete clinical resolution was achieved each time (Fig. 1B-G). The patient’s CD4 count during follow-up is shown in Fig. 2. The control biopsies showed typical features of Bowenoid papulosis, with no signs of infiltrating squamous cell carcinoma. During follow-up, the patient was diagnosed with hepatocellular carcinoma in 2008 and with a high-grade anal neoplasm in 2009. The respective treatments were chemotheraphy and surgery followed by consolidation radiation therapy.

In all, over a period of 6 years we performed 5 sessions of CO2 laser therapy, the last of which was in April 2009; no adverse effects were observed in any of the sessions. The patient remained free of lesions in the vulvar area from September 2009 until December 2010, when she died following progression of her hepatocellular carcinoma. The only treatment required during this period was cryotherapy of isolated lesions in the area.

CO2 laser therapy causes minimal postoperative pain and produces better cosmetic results than other methods, especially when used on the external genitalia. It has been used since 1988 to treat large Bowenoid papulosis lesions that are difficult to treat with other methods. The primary complications described to date are vesicovaginal fistulas and vulvodynia, especially of the posterior commissure or the vulval vestibule. CO2 laser therapy for Bowenoid papulosis lesions achieves complete response, and the rate of recurrence is between 12.5% and 21%. The

References

M. Gómez Vázquez,* R. Navarra Amayuelas
Servicio de Dermatología, Hospital Municipal de Badalona, Badalona Serveis Assistencials, Barcelona, Spain

*Corresponding author.
E-mail address: mergova@terra.es (M. Gómez Vázquez).

Please cite this article as: Llamas-Velasco A, Vargas E, Delgado Y, García-Diez A. Tratamiento con láser de dióxido de carbono de una papulosis bowenoides vulvar extensa en paciente con sida. Actas Dermosifiliogr. 2013;104:934–936.