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Malignant Melanoma–a Genetic Overview
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Abstract. Malignant melanoma, a potentially lethal skin neoplasm, is characterized by a complex and 
heterogeneous etiology. Both incidences and deaths associated with melanoma are increasing in Caucasian 
populations. While exposure to ultraviolet radiation through sun-exposure is the major risk factor; the host 
factors including skin type and number of moles are critical in predisposition. The CDKN2A is a high 
penetrance melanoma susceptibility gene as carriers of the mutations are predisposed to the disease within 
familial settings. The gene is also somatically altered to varying degrees in sporadic melanoma. The CDK4 gene 
due to occurrence of activation mutations in a few families worldwide represents another melanoma susceptibility 
locus. The variants within the melanocortin receptor 1 (MC1R) gene, which encodes a melanocyte specific 
surface receptor with a key role in pigmentation, are associated with high risk phenotypes and increased risk of 
melanoma. Melanoma tumors are characterized by activation of the RAS-RAF-MEK-ERK pathway through 
either autocrine growth factor stimulation or oncogenic mutations in the B-RAF or N-RAS genes. Somatic 
mutations in the B-RAF gene are complemented by those in the N-RAS gene and represent the major genetic 
alterations. The mutations in the B-RAF gene in melanoma due to occurrence in melanocytic nevi represent 
early events that additionally require loss of cell cycle inhibitors like CDKN2A for melanoma progression and 
development. The sequence of events points to the cooperative collaboration between different genetic pathways 
in tumor development that can be and are being used as targets for developing specific therapeutic agents.
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MELANOMA MALIGNO: UNA VISIÓN DE CONJUNTO SOBRE LA GENÉTICA
Resumen. El melanoma maligno, una neoplasia cutánea potencialmente mortal, se caracteriza por una etiolo-
gía compleja y heterogénea. Tanto la incidencia como las muertes asociadas al melanoma están aumentando en 
la población caucásica. Aunque la exposición a la radiación ultravioleta a través de la exposición solar es el prin-
cipal factor de riesgo, los factores que dependen del huésped, como el fototipo y el número de nevus, son críti-
cos en la predisposición. El CDKN2A es un gen de susceptiblidad para el melanoma de alta penetrancia, ya que 
los portadores de mutaciones están predispuestos a la enfermedad en el entorno familiar. El gen también está 
alterado somáticamente, en grados variables, en el melanoma esporádico. El gen CDK4, debido a la activación 
de mutaciones en algunas familias a nivel mundial, representa otro locus de susceptibilidad para el melanoma. 
Las variaciones dentro del gen del receptor de la melanocortina 1, que codifica un receptor de superficie especí-
fico de los melanocitos con un papel clave en la pigmentación, están asociadas con fenotipos de alto riesgo y un 
riesgo aumentado de melanoma. Los tumores de melanoma se caracterizan por la activación de la vía 
RAS-RAF-MEK-ERK a través de la estimulación por factor de crecimiento autocrino o por mutaciones oncó-
genas en los genes B-RAF o N-RAS. Las mutaciones somáticas en el gen B-RAF se complementan por aque-
llas en el gen N-RAS y representan las principales alteraciones genéticas. Las mutaciones en el gen B-RAF en 
el melanoma, que tienen lugar en los nevus melanocíticos, representan eventos iniciales que requieren, además, la 
pérdida de inhibidores del ciclo celular como CDKN2A para la progresión y el desarrollo del mela noma. La 
secuencia de eventos apunta hacia una colaboración entre las diferentes vías genéticas en el desarrollo tumoral, 
que pueden y están siendo empleadas como dianas para desarrollar agentes terapéuticos específicos.
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Introduction

Melanoma is the most aggressive and potentially lethal 
skin tumor. It originates in pigment-producing melano-
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mately 10 % of melanoma cases report a first- or second-
degree relative with melanoma. Epidemiological studies 
suggest that the estimated genetic component in malig-
nant melanoma is around 18 % 31,32. Analysis of familial 
cancer risk of melanoma has shown a risk of roughly 2.5 
for an offspring when a parent had melanoma 33. Genetic 
predisposition in families is in part attributed to two 
melanoma susceptibility genes. Germline alterations in the 
major melanoma susceptibility gene, CDKN2A on chro-
mosome 9p21, occur in 25-40 % of melanoma families 34,35. 
The CDK4 oncogene on chromosome 12q14 is consid-
ered to be another melanoma susceptibility gene. However, 
to date, only four families worldwide with melanoma-
prone kindreds have been reported to carry mutations in 
CDK4 36-38.

Genetics of Melanoma

The CDKN2A Gene Locus

The tumor suppressor p16INK4A (henceforth called p16) 
was identified through two independent lines of research. 

cytes that are found in the basal layer of the epidermis and 
in the eye 1. The number of melanoma cases and deaths 
worldwide has increased faster than many other cancers 
though, lately, the trend has stabilized 2-4. The annual 
 increase in incidence rates has been 3-7 % per year for 
white-skinned Caucasian populations 5,6. Estimates 
 suggested a doubling of melanoma incidence every 
10-20 years 7. The highest annual incidence rates are found 
in Australia and New Zealand with about 56 cases per 
100,000 inhabitants with no statistically significant dif-
ferences between males and females 2,8. Other countries 
with high melanoma incidence rates are USA and Cana-
da 9,10. In Europe, the highest incidence rates have been 
reported in Scandinavia with about 15 cases per 
100,000 inhabitants 11,12. In Germany, the incidence rate is 
about 10-12 cases per 100,000 inhabitants 11. The  lowest 
incidence rates in Europe are reported in Mediterranean 
countries with about 5-7 cases per 100,000 in habi-
tants 11,13,14. The north-south gradient in melanoma inci-
dence in Europe has been explained by the differences in 
skin pigmentation between populations 11. At a global 
level, the lowest annual incidence rates are found in Asian 
countries with rates near 0.5 cases per 100,000 inhabit-
ants 15,16. Melanoma is rare in individuals below 20 years of 
age and frequent in young and middle-aged adults 6,17,18.

Risk Factors

An individual’s risk of developing melanoma depends on 
two sets of factors: a) host-related factors such as pigmen-
tation and skin reaction to sunlight; and b) environmental 
factors (table 1) 19-21.

The main environmental risk factor is exposure to ultra-
violet (UV) light. Epidemiological evidence suggests that 
high-intensity intermittent sun exposure is the key factor 
in inducing of the majority of melanomas 22,23. The risk of 
melanoma is higher in fair-skinned people, especially those 
with blond or red hair who sunburn and freckle easily, than 
in people with darker complexions 24. In addition to UV 
exposure, age at exposure is an important determinant of 
the risk of melanoma. Several studies have suggested a 
strong link between sunburn in childhood and develop-
ment of melanocytic neoplasia later in life 25. High sun ex-
posure during adult life constitutes a significant risk factor 
for melanoma only if there had been substantial sun expo-
sure during childhood 26. The presence of atypical or dys-
plastic melanocytic nevi are major markers for melanoma 
risk across all continents, both in high risk families and in 
the general population 27,28. Also the presence of multiple, 
non-dysplastic moles points to increased melanoma 
risk 29,30.

One of the most significant risk factors for melanoma is 
a family history of the disease. It is estimated that aproxi-

Table 1. Melanoma risk factors

Constitutional predisposition

Fair skin and hair color

Number of benign nevi (moles)

Freckles

Presence of three or more atypical nevi

Propensity to burn in the sun rather than tan

Prior therapy with psoralen and ultraviolet (UV) A light

History of solar keratoses, squamous cell carcinoma, 
or xeroderma pigmentosum

Family history of dysplastic nevi or melanoma

Risk behaviors

History of three or more episodes of sunburn, especially 
during childhood

Episodic excessive sunlight exposure (e.g. recreational 
tanning)

Long term continuous sunlight exposure (e.g. outdoor workers)

UV exposure at tanning salons

Environmental factors

Stratospheric ozone depletion, latitudes closer to equator 
(e.g., higher UV radiation)
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In cell biology experiments, it was detected through its in-
teraction with CDK4 in a yeast two-hybrid screen 39. Si-
multaneously, the gene CDKN2A (MTS1) was mapped to 
the frequently altered chromosome 9p21 locus by posi-
tional cloning 40,41. The p16 protein consists of 156 amino 
acids encoded by three exons.

Subsequent to the discovery of p16, a second transcript 
arising from the CDKN2A locus was discovered, which 
comprised of an alternate exon 1  located about 20 kb 
upstream the regular exon 1 . Exon 1  splices with ex-
ons 2 and 3 to transcribe p14ARF (henceforth called ARF) 
from a separate promoter (p19ARF in the mouse). The 
ARF transcript is translated in an alternate reading frame 
(fig. 1). The human ARF protein consists of 132 amino 
acids. The two proteins, p16 and ARF, encoded from a 
partially shared genomic sequence are structurally unre-
lated. Incidentally, both function as cell cycle inhibi-
tors 42,43; p16 functions in the retinoblastoma pathway 
and ARF in the p53 pathway of cell cycle regulation. 
 Adjacent to CDKN2A, two exons of CDKN2B encode 
p15INK4B which is homologous and functionally similar to 
p16INK4A (fig. 1) 44,45.

The CDKN2A gene locus represents a unique structure 
in the mammalian genome. Overlapping gene structures 
are common in viral and bacterial genomes. In the 
small-sized viral genomes, this structure type represents an 
important mechanism to maximize the usage of the cod-
ing sequence 43. The unique genomic organization of the 
CDKN2A gene locus may explain why p16/ARF is a fre-
quent target of inactivation in tumorigenesis. A single ge-
netic hit might result in simultaneous disruption of two 
key anti-oncogenic mechanisms.

p16 and the Retinoblastoma Pathway

In hypophosphorylated state, the retinoblastoma protein 
(Rb) binds to E2F transcription factors, which are neces-
sary for cell cycle progression from G1 to S phase 46,47. The 
enzymatic complex of CDK4/6 and cyclin D positively 
regulates cell cycle by phosphorylating Rb. However, p16 
disrupts the kinase complex of CDK4/6 and cyclin D by 
binding to CDK4. It inhibits phosphorylation of Rb and 
therefore negatively regulates cell cycle progression 48. An-
kyrin-like repeats in the protein sequence motif of p16 are 
involved in binding to CDK4 49,50.

ARF and the p53 Pathway

The ARF protein acts as a cell cycle inhibitor by antago-
nizing MDM2-mediated degradation of p53, thereby sta-
bilizing this tumor suppressor protein 51,52. The exact 
mechanism whereby ARF stabilizes p53 is not entirely 
clear. Three models have been proposed to explain the 
mechanism of p53 stabilization by ARF 53. One model 
suggests that ARF localizes to the nucleolus and seques-
ters MDM2 to that compartment, resulting in release of 
p53 from MDM2 inhibition 54,55. Another proposed mech-
anism is the formation of ternary complexes of ARF, 
MDM2 and p53 in the nucleoplasm, which prevents nu-
clear export of both MDM2 and p53 56. A third possible 
mechanism is that ARF need not to relocate MDM2 to 
the nucleolus for proper function; but rather only inhibits 
E3-ligase activity of MDM2 to stabilize p53 57,58. Expres-
sion of c-myc, E2F, mutated RAS or loss of Rb induces 

Figure 1. Genomic organization of the CDKN2A locus.
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ARF 59-62. This response to oncogene expression depends 
on the cellular context; RAS potently induces ARF in 
murine, but not human, cells 62-64. In murine embryonic fi-
broblasts (MEFs), ARF expression correlates with onset of 
senescence, and cells lacking ARF do not senesce in cul-
ture 65,66. In contrast, ARF does not play a major role in 
replicative senescence of human cells 67,68. Recently, inter-
actions of ARF with SUMO-E2, AP-1 dimers, BCL6, 
p63, DP1 and nucleophosmin (NPM)/B23 have been re-
ported 69-74. By degradation of B23, ARF decreases the 
processing of ribosomal RNA, thereby limiting cell growth 
and inducing cell cycle arrest 74,75. Repressor molecules such 
as Twist, TBX2, and Pokemon have been shown to inhibit 
ARF expression 76-78.

Cdkn2a Knockout Studies

The major support for tumor suppressor function of the 
CDKN2A gene locus came from knockout studies. The 
construction of different types of knockout mice provid-
ed comparisons of p16- and Arf-null phenotypes, respec-
tively. In the first Cdkn2a knockout mice exon 2 was 
ablated, resulting in inactivation of both p16 and Arf 
transcripts (100). These animals did not develop melano-
ma, but were prone to the development of other tumors, 
like fibrosarcomas and lymphomas. To assess the effects 
of deleting the Arf transcript alone, exon 1  of the 
 Cdkn2a locus was knocked out in mice 65. The animals 
expressed a phenotype similar to p16/Arf-null mice, sug-
gesting that inactivation of Arf, rather than p16, may be 
responsible for the tumor susceptibility phenotype in the 
first model. Mice with deletion of one copy of Arf com-
bined with complete inactivation of p16 developed 
melanomas with very high penetrance, compared to 
p16 knockout mice that retained both Arf alleles. Arf ap-
pears to be haploinsufficient in this context, suggesting 
cooperation between the p16 and Arf pathways in 
melanoma development 79. Crossing p16/Arf-null mice 
with mice overexpressing oncogenic H-ras (Tyr-H-ras 
transgenic mice) resulted in offspring that developed cu-
taneous malignant melanoma spontaneously with high 
penetrance 80. These data support the hypothesis that 
 further genetic events in addition to CDKN2A inactiva-
tion are required for melanocyte tumorigenesis. Two 
groups later generated specific, “pure” p16 knockout mice. 
In one model (designated Ink4a */*), a stop signal at co-
don 101 in exon 2 was introduced, producing a truncated 
and unstable p16 protein 79. In the other type (termed 
Ink4a exon1 ), exon 1  was deleted 63. In both knockouts 
the expression of Arf was unaffected. The “pure” p16-null 
mice had a lower frequency of spontaneous tumor devel-
opment compared to the Arf-null mice. Importantly, like 
mice with deletion of one copy of Arf and p16 inactiva-

tion, the “pure” p16-null mice were susceptible to sponta-
neous melanoma development, albeit at a lower frequency. 
Altogether, knockout studies indicate that both, p16 and 
Arf, function as tumor suppressors in mice. Significantly, 
both types of “pure” p16 knockout mice developed 
melanoma, which was not detected neither in p16/Arf-null 
mice nor in Arf-null mice.

Data from other non-murine model systems also sup-
port the notion that p16 functions as a tumor suppressor 
gene. Canine primary melanomas and osteosarcoma cell 
lines from harbor frequent p16 inactivation 81,82. Rat car-
cinogen models show a high incidence of p16 promoter 
methy lation and p16/Arf deletion 83,84. Strains of the fish 
Xiphophorus are prone to melanoma. Susceptibility in this 
species maps to the DIFF locus, which is tightly linked to 
the Xiphophorus INK4A locus 85.

Alterations of the CDKN2A Gene Locus 
in Melanoma

Germline alterations

The CDKN2A has been identified as a high penetrance 
melanoma susceptibility gene. Around 50 % of melano-
ma-prone kindreds show genetic linkage to markers with-
in the 9p21 region, and of those, approximately 40 % 
carried germline mutations in CDKN2A 35,38,86. Data from 
families studied worldwide indicate that the frequency of 
CDKN2A mutations increases with a) the number of 
melanoma cases in the family; b) the presence of individu-
als with multiple melanomas and c) an age at diagnosis less 
than 50 years 87. In addition to melanoma, mutation carri-
ers are at an increased risk of pancreatic cancer. Several 
studies have reported the occurrence of pancreatic cancer 
in families with CDKN2A mutations 88,89.

Recently, ARF mutations have been suggested to pre-
dispose to melanoma, as well as to nervous system tumors 
(NSTs) 90-92. This combination of tumors has been pro-
posed as a discrete syndrome by several investigators 93,94. 
A specific germline deletion of ARF in the absence of con-
comitant loss of p16 was found in a family segregating 
melanomas and NSTs 90. It has been concluded that exon 
1  alone is sufficient for ARF function 90. A deletion of 
ARF exon 1 was found in a family where the mother and 
daughter had melanoma 95. A germline 16 bp insertion in 
exon 1  was detected in a patient with multiple melano-
mas but without a family history of the disease 96. Exon 1  
mutations that do not alter p16 function have been report-
ed in kindreds with familial melanoma and astrocyto-
ma 90,96. A cluster of five different germline mutations at 
the ARF exon 1  splice donor site was recently identified 
in melanoma pedigrees; three of the variants resulted in 
aberrant splicing of ARF mRNA 97.



Bloethner S et al. Malignant Melanoma–a Genetic Overview
 

Actas Dermosifiliogr. 2009;100:Supl. 1:38-5142

Alterations in Sporadic Melanoma

The CDKN2A (p16) gene is involved in the development 
of sporadic melanoma. Monoallelic deletion of the CDK-
N2A gene locus is found in roughly 50 % of primary tu-
mors and nearly all melanoma cell lines 98-100. However, 
some reports have not found frequent alterations, thereby 
the role of CDKN2A (p16) in sporadic melanoma appears 
inconsistent 101,102. Genetic alterations of p16 involved in 
sporadic melanoma are point mutations (0-26 %), promot-
er methylation (0-10 %), and homozygous deletions 
(5-25 %) 103. Intragenic mutations and hypermethylation of 
the p16 promoter appear to be rare 104-106. The low frequen-
cy of p16 mutations in conjunction with a high frequency 
of allelic losses at chromosome 9p21 has also been inter-
preted as an indicator of the presence of other tumor sup-
pressor genes at this locus 100,107-109. Loss of p16 expression 
is associated with advanced stages of sporadic melanomas 
and a high mitotic index, suggesting that loss of p16 is a 
late event in the progression of sporadic primary melano-
mas 110,111. In another report, the degree of p16 expression 
was related to the histological type of tumor 112. Increased 
allelic loss at 9p21 also correlated with increased patient 
age at diagnosis 108. Homozygous deletions affecting 
p16 are more frequent in melanoma cell lines than in pri-
mary tumors, which in part is due to technical constraints 
in detection of homozygous deletions in tumors 98,101.

CDKN2A Polymorphisms

The CDKN2A gene carries several polymorphisms. Two 
polymorphisms in the 3’untranslated region of the CDK-
N2A gene, C500G and C540T, have been associated with 
melanoma 113,114. The C500G change ablates an MspI/HpaII 
restriction site; it has an estimated allele frequency of 
12-15 % 115,116. The C540T change results in the loss of a 
HaeIII site; its estimated frequency is 20-25 % 100,116. The 
functional importance of these polymorphisms is not 
known, but carriers of either of these variants had a sig-
nificantly shorter progression time from diagnosis of the 
primary tumor to the appearance of metastasis 117. On the 
other hand, presence of the C540T polymorphism in mul-
tivariate analysis was significantly associated with im-
proved survival in patients with vertical growth phase 
tumors 118.

Several additional polymorphisms of the CDKN2A 
gene are known, that do not alter the amino acid sequence 
of p16 or which are functionally indistinguishable from 
the wild-type protein 119,120. The most extensively docu-
mented polymorphism, A148T, has previously been shown 
to have no effect on p16 protein function 119,121. However, 
in a latter study, A148T was associated with an increased 
risk of melanoma development122. Furthermore, in a 
case-control study the A148T polymorphism was detected 

at a significantly higher proportion in multiple primary 
melanoma cases compared to healthy controls 123.

The CDK4 Gene

Besides CDKN2A, the CDK4 oncogene on chromosome 
12q14 is considered to be another melanoma susceptibility 
gene; however, only four melanoma-prone kindreds have 
been reported to carry mutations in CDK4. All mutations 
involved codon 24 of the gene. Two families carried a 
 Arg24Cys germline point mutation (33), and two other 
families an Arg24His substitution 37,38. CDK4 is a key reg-
ulator of the cell cycle. Binding to p16 prevents CDK4 from 
forming a complex with cyclin D, thereby blocking Rb 
phosphorylation and cell cycle progression 124. Both types 
of mutations affect the p16-binding domain of the CDK4 
protein, generating an activated oncogene that is resistant 
to inhibition by p16 36. Mice with knocked-in Arg24Cys 
mutation develop pancreatic hyperplasia and are highly 
susceptible to melanoma development after carcinogenic 
exposure to 7,12-dimethylbenz(a)anthracene (DMBA) 
and 12-0-tetradecanoylphorbol-13-acetate (TPA) 125,126.

Melanocortin Receptor 1 (MC1R) Gene

Another critical functional pathway with a major role in 
melanoma involves pigmentation genes, with a central role 
for MC1R. Human MC1R gene consists of a single exon 
located on chromosome 16q24.3 that encodes a membrane 
receptor. The gene encoding receptor is highly polymor-
phic and up to date more than 100 variants have been de-
scribed, many of which are non-synonymous 127,128. MC1R 
is the major contributor to human pigmentation diversity 
accentuated by the association of the gene variants with 
a) skin pigmentation variation; b) skin cancer risk includ-
ing melanoma; c) influence on penetrance of germline 
CDKN2A mutations in carriers; and d) the frequency of 
somatic BRAF mutations melanoma tumors 129-133. Par-
ticularly, five single nucleotide polymorphisms associated 
with red hair, fair skin and freckling are designated as 
RHC variants. These include the D84E, R142H, R151C, 
R160W and D294H polymorphisms 134. Moreover, in 
Northern European population groups the variants V60L, 
R142H, R151C, R160W and D294H account for 60 % of 
all cases of red hair and at least one variant is present in 
30 % of that population 135.

Functional analysis of MC1R variants revealed ineffi-
cient stimulation of the downstream cAMP pathway. Hy-
pomorphic RHC variants diminish receptor function 
either due to incomplete integration of the receptor mol-
ecule into the melanocytic membrane, diminished binding 
capacity of the variant receptor to the -MSH ligand or 
because of defective G-protein activation 128,134,136. As a 
consequence, low TYR activity results in synthesis of yel-
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low phaeomelanin, which is responsible for the phenotype 
of red hair and fair skin. It was recently shown that red 
hair and fair skin represents the phenotype of individuals 
with truncated MC1R protein, thus the MC1R null geno-
type 137. Up-to-date, there is plenty of evidence showing 
that MC1R and its variants affect more than skin or hair 
pigmentation variation. The association of polymorphisms 
in the MC1R gene with melanoma is not only due to re-
duced pigmentation capabilities 138. Functional studies 
 revealed that MC1R variants are also associated with re-
duced apoptosis and inefficient DNA repair in melano-
cytes, thereby, pointing to an effect beyond pigmentation 
traits 139,140.

The RAS-RAF-MEK-ERK Pathway

The RAS-RAF-MEK-ERK pathway is a highly con-
served signalling pathway and has been found to play an 
important role in melanocytic neoplasia 141,142. Activation 
of this pathway in cutaneous melanocytes has been shown 
to occur by a variety of mechanisms that include autocrine 
growth factor stimulation and oncogenic mutations in the 
B-RAF or N-RAS genes 142,143. RAS proteins are small 
G-proteins that are anchored on the inner surface of the 
plasma membrane 144. Those proteins are downstream of a 
variety of transmembrane receptors, and are activated 
when GDP is converted to GTP. In the active GTP-bound 
state, RAS activates a number of downstream signalling 
cascades involved in controlling cell growth and behaviour. 
Initially, RAS interacts with and activates B-RAF that 
transduces regulatory signals from RAS to MEK1/2. The 
signal transducer MEK1/2 phosphorylates ERK1/2, lead-
ing to activation of these kinases, which in turn activate a 
variety of transcription factors. ERK phosphorylates many 
substrates, thereby regulating numerous cellular functions, 
such as gene expression, metabolism and morphology. 
Both the duration and intensity of ERK activity are im-
portant 145. Consequently, ERK signalling plays an impor-
tant role in determining cellular fate, choosing between 
diverse responses such as proliferation, differentiation, se-
nescence or survival 146.

In melanocytes, ERK is also activated in the cAMP-de-
pendent signalling cascade as a consequence of -melano-
cyte-stimulating hormone binding to melanocortin-1 
receptor with B-RAF as a key intermediate 147,148. A major 
way by which ERK signalling promotes cell cycle progres-
sion is through transcriptional upregulation of cyclin 
D1 149. Cyclin D1 forms a complex with CDK4/6, which 
phosphorylates the retinoblastoma protein and allows cells 
to progress from G1 to S phase of the cell cycle. Examples 
of genes that are transcriptionally induced in response to 
ERK activation include VEGF, a positive regulator of ang-
iogenesis, and MMP-1, a collagenase involved in extracel-
lular matrix degradation 150,151. Sustained ERK activation 

has also been shown to induce expression of 3-integrin in 
certain cell types 152. Proteins such as VEGF, MMP-1 and 

3-integrin are believed to play crucial roles in RAS-me-
diated tumor cell invasion and metastasis 153.

The RAF Genes

Mammals carry three RAF genes, A-RAF, B-RAF and 
C-RAF, which reside on chromosomes Xp11, 7q34 and 
3p25, respectively. RAF proteins are structurally related 
and share three conserved regions (CR1, CR2 and CR3). 
The N-terminally located CR1 contains the Ras-binding 
domain as well as a cysteine-rich domain, which also func-
tions to bind Ras 154. The C-terminally located CR3 region 
contains the kinase domain. Inactive cytoplasmic Raf upon 
binding to Ras-GTP is recruited to the cell membrane 
and is activated through a number of phosphorylation 
events.

All three RAF proteins activate MEK, but with dif-
ferent intensities and phenotypic differences between 
A-RAF-, B-RAF- and C-RAF-null mice suggest that in-
dividual family members perform distinct functions in de-
velopment, possibly due to tissue specific differences in 
expression patterns 155. Neither b-raf-null nor c-raf-null 
mice are viable, whereas a-raf-null mice die soon after 
birth 156-158. B-raf-null mice die of vascular and neuronal 
defects 156. Whereas C-Raf is ubiquitously expressed, 
A-Raf and B-Raf display a more restricted expression pat-
tern 159.

The B-RAF oncogene encodes a serine/threonine ki-
nase regulated by binding to RAS protein. B-RAF acts in 
the RAS/RAF/MEK/ERK pathway by transducing regu-
latory signals from RAS to MEK1/2. B-RAF has a sub-
stantially greater basal kinase activity than C-RAF or 
A-RAF 155,160. In contrast to C-RAF or A-RAF, B-RAF 
possesses only two instead of four distinct RAS-GTP-de-
pendend phosphorylation sites for maximal activation 
(T599 and S602) 155,160. This structure expedites the activa-
tion of B-RAF through a single amino acid substitution. 
B-RAF is expressed mainly in different neuronal tissues, 
but also in other organs such as the testis and heart 161.

In 2002, a genome-wide screen for proto-oncogenes 
showed that the B-RAF gene is mutated in a variety of dif-
ferent human cancers 162. The highest frequencies of 
B-RAF mutations were identified in melanomas (67 %), 
colorectal (18 %) and ovarian (14 %) cancers 162. Over 
40 different B-RAF mutations have been described in the 
literature; approximately half of those have been function-
ally analyzed 162-164. The majority of B-RAF mutations re-
sult in increased in vitro kinase activities of the protein; 
but also mutants with impaired or no kinase activity have 
been identified 162,164,165. The most common mutation 
found in B-RAF is a valine to glutamic acid change at res-
idue 600. The V600E B-RAF missense mutation results in 
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maximal constitutive activation of kinase activity. The 
mechanism involves a conformational change mimicking 
phosphorylation at T599/S602 residues in wild-type 
B-RAF (fig. 2) 162. The V600E mutant possesses an up to 
480-fold greater basal activity and induces transformation 
of cultured NIH3T3 cells with much higher efficiency 
compared to the wild-type 162,164.

B-RAF is mutated in about 70 % of melanomas 162,166-168. 
The frequency of mutations depends on histological sub-
type and tumor location; a higher frequency has been re-
ported in non-chronically sun-induced damaged sites than 
in chronically sun-induced damaged ones 169. Over 20 
 other B-RAF mutations described in melanoma are rather 
rare. B-RAF mutations are also found in up to 80 % of 
melanocytic nevi, indicating that these mutations occur 
early during melanoma development. However, at the 
same time, B-RAF activation alone is insufficient to 
 induce melanoma tumorigenesis 170-172. Spitz nevi, with 
histological similarity to melanoma lack B-RAF muta-
tions 171,173. Also blue nevi with characteristic coloration do 
not carry B-RAF mutations 171,173. Expression of V600E 
mutant B-raf in zebrafish results in nevi but not in melano-
ma formation. Expression of V600E mutant B-raf in 
p53-deficient fish readily resulted in invasive melanoma 174. 
V600E B-Raf has been shown to transform immortalized 
mouse melanocytes 175. Moreover, V600E B-Raf suppres-
sion in mela noma cell lines by small interfering RNA 
(siRNA) resulted in less efficient growth in nude mice 
compared to control cells 176,177. Melanoma cells expressing 
V600E B-RAF showed constitutive cyclin D1 expression 
and downregulation of tumor suppressor p27Kip1178. Other 
effects of  increased ERK activity mediated by activated 
B-RAF included altered integrin expression, decreased 
E-cadherin expression, increased matrix metalloproteinase 

secretion, invasion, and the regulation of the critical 
melanocyte transcription factor MITF 179. However, recent 
data from animal models and human melanocytes suggest 
that acquisition of mutations in the B-RAF gene can be a 
founder event in melanoma genesis without requirement 
for the loss of p16 for tumor progression 180,181. In contrast 
to  cutaneous melanoma, development of uveal melanoma 
also seems to occur via activation of the RAS-RAF- 
MEK-ERK pathway, but without involvement of muta-
tions in the B-RAF or RAS genes 182,183.

The RAS Genes

The human RAS proto-oncogenes (H-RAS, K-RAS, and 
N-RAS) reside on chromosomes 11p15, 1p22 and 12p12, 
respectively. The three RAS genes encode four highly re-
lated cell membrane-associated proteins, H-Ras, N-Ras, 
K-Ras4A and K-Ras4B, that are involved in transduction 
of extracellular growth and differentiation signals 184. The 
four Ras proteins carry identical initial 85 amino acids. 
This part includes the effector domain (residues 32-40), 
through which Ras proteins interact with downstream ef-
fectors. The N-terminal part also contains two mobile re-
gions named switch I (residues 30-40) and switch II 
(residues 60-76) regions, both of which undergo confor-
mational changes upon GTP binding. The most C-termi-
nal part of Ras contains a CAAX motif. This motif is 
subjected to a number of post-translational modifications, 
which are required for proper anchoring of Ras to the cell 
membrane 185.

The RAS genes are mutated in approximately 30 % of all 
human tumors 186. Mutations in K-RAS are most common, 
followed by N-RAS, whereas mutations in H-RAS are rare. 
High frequencies of K-RAS alterations have been found in 
carcinomas of the pancreas, colon, and lung, whereas 
N-RAS mutations are frequent in myeloid leukemias and 
melanomas 186. Most mutations in RAS genes are single 
base changes affecting codons 12, 13, and 61. Mutations in 
these codons reduce the intrinsic GTPase activity of RAS 
proteins and also make them insensitive to GTPase-acti-
vating proteins 187,188. As a result, mutated RAS is locked in 
the GTP-bound state and continuously activates its down-
stream effector targets. The most frequent N-RAS muta-
tions in melanoma occur in codon 61 189. Mutations in 
codon 12 and 13 of the N-RAS gene are less common. The 
presence of N-RAS mutations in tumor associated nevi 
and radial growth phase lesions suggests that N-RAS 
 activation occurs at an early stage during melanoma 
 development 189,190. N-RAS mutations are also found in 
10 % of common acquired nevi and 28-56 % of congenital 
nevi 170,172,191. N-RAS mutations are associated with 
melanoma arising in chronically sun-exposed rather than 
intermittently exposed skin 192-194. Moreover, N-RAS mu-
tations are rare in melanomas from sun-protected skin, 

Figure 2. Structure of B-RAF with three conserved domains 

CR1, CR2 and CR3 that are common to all RAF proteins. The 

protein is activated by RAS-dependent phosphorylation of T599 

and S602 in the activation segment. The G-loop contains a 

highly conserved glycine motif. A V600E substitution accounts 

for over 90 percent of all B-RAF mutations.
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indicating that UV radiation may play a role in the genesis 
of N-RAS mutations in melanoma 194. Suppression of on-
cogenic N-RAS (Q61K) in melanoma cells resulted in in-
creased apoptosis, decreased ERK phosphorylation, and 
reduced expression of cyclin D1 195. These data suggest that 
oncogenic N-RAS is important for avoiding apoptosis in 
melanoma, and imply a role of activating N-RAS muta-
tions in melanoma development.

Both functional and genetic evidences indicate that 
B-RAF and N-RAS act linearly in the RAS-RAF-
MEK-ERK signalling pathway, which is evidenced by al-
most mutual exclusiveness of mutations in these genes and 
consequent ERK activation 142,143. However, activated 
B-RAF effects through mitogen-activated protein  cascade; 
activated RAS effects additionally through phosphotidyli-
nositol (PI3)-kinase and RAL guanine dissociation stimu-
lator cascades 196.

Interaction Between the RAS-RAF-MEK-ERK 
and Rb/p53 Pathways

The results of several studies suggest that activated N-RAS 
or B-RAF alone are not able to transform human melano-
cytes, but require additional, cooperating events for tumor 
formation. Activating B-RAF or N-RAS mutations and 
loss of p16 expression occur at high frequencies in melano-
mas. In a recent study, both B-RAF V600E mutation and 
p16 inactivation have been found to accompany amplifica-
tion of the major melanocyte differentiation factor MITF 
in melanoma cell lines. MITF amplification was more 
prevalent in metastatic disease and correlated with de-
creased patient survival 197. These data identify MITF as a 
possible novel oncogene, which in cooperation with mu-
tated B-RAF, can transform human melanocytes in a 
p16-deficient background. In human nevi, sustained 
V600E B-RAF expression induced cell cycle arrest, 
 accompanied by both, p16 induction and senescence-asso-
ciated acidic -galactosidase (SA- -GAL), a classical 
marker for senescence 198. Transgenic mice overexpressing 
oncogenic N-RAS (Q61K) did not develop melanoma, but 
exhibited hyperpigmentation, and persistence of melano-
cytes in the dermis and epidermis.

Interestingly, when N-RAS Q61K transgenic mice 
were crossed with p19-null knockout mice, offspring de-
veloped cutaneous metastasizing melanomas within six 
months of birth 199. Zebrafish expressing V600E B-RAF 
develop nevi, which require a p53-deficient background 
to progress to invasive melanomas 174. Altogether, the re-
sults of these studies support the hypothesis that acti-
vated N-RAS or B-RAF require cooperating events such 
as p16 inactivation for melanomagenesis. Moreover, these 
findings underscore the importance of the interaction 
between RAS-RAF-MEK-ERK and Rb/p53 pathways 
in melanoma.

Conclusions

The ever increasing incidence of malignant melanoma 
makes it an important public health issue. Several risk 
factors associated with melanoma include exposure to ul-
traviolet light and a number of host factors. Family his-
tory of the disease constitutes one of the most significant 
risk factors, which is in part explained by germline altera-
tions in the CDKN2A and CDK4 genes. Somatic altera-
tions at the CDKN2A gene locus are frequent in sporadic 
melanoma. Another gene that plays a crucial role in in-
creased susceptibility to melanoma is MC1R, which en-
codes a key component of the pigmentation pathway. 
MC1R variants are associated with high risk pheno-
types and melanoma. However, the major pathway 
with an important role in malignant melanoma is 
RAS-RAF-MEK-ERK, which is activated by a variety 
of mechanisms including autocrine growth factor stimu-
lation and oncogenic mutations in the B-RAF and 
N-RAS genes. The B-RAF is the most frequently mutat-
ed gene in melanoma followed by N-RAS, and mutations 
in both genes occur in a mutually exclusive manner. Mu-
tations in the B-RAF gene are early events, but melano-
ma development requires additional loss of check points 
that mainly occurs in the form of CDKN2A aberrations. 
The CDKN2A gene encodes two cell cycle inhibitors that 
are upstream effectors of the Rb and p53 pathways and 
gene aberrations may inactivate both critical cell cycle 
regulator mechanisms. Melanoma progression, therefore, 
results from active interaction between RAS-RAF-MEK 
and Rb/p53 pathways. However, melanoma is also char-
acterized by considerable genetic heterogeneity and a 
number of subtypes can be identified, which might be 
important for development of therapy. Within the last 
years, overwhelming amounts of research have contrib-
uted to elucidate the molecular genetics of malignant 
melanoma. The basic module for cancer treatment re-
quires a profound knowledge of the etiology of disease to 
identify new therapeutic targets.
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