

Review

Role of Oral Tetracyclines in Preventing Acneiform Rash in Patients With Non-small Cell Lung Cancer Treated With Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review

Q1 R. Sousa ^{a,*}, B. Vieira Granja ^{b,c}, S. Magina ^{b,c}

^a Department of Pharmacology, Faculty of Medicine, University of Porto, Porto, Portugal

^b Department of Dermatology and Venereology, Centro Hospitalar Universitário de São João, EPE, Porto, Portugal

^c Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal

ARTICLE INFO

ABSTRACT

Keywords:

Acneiform rash
Epidermal growth factor (EGFR)
Non-small cell lung cancer (NSCLC)
Oral tetracyclines
Prophylactic treatment
Tyrosine kinase inhibitors (TKIs)

Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the current first-line therapy for non-small cell lung cancer (NSCLC). Acneiform rash is a common adverse effect of this treatment, leading to treatment interruption and affecting the patients' quality of life.

Methods: We conducted a systematic review to assess the role of oral tetracyclines in the prevention of acneiform rash in patients with NSCLC on EGFR TKIs. We conducted a search across Pubmed, Web of Science and Cochrane databases in January 2025. Studies were included if they evaluated prophylactic treatment with oral tetracyclines for acneiform rash in patients with non-small cell lung cancer initiating concomitant epidermal growth factor receptor tyrosine kinase inhibitor therapy.

Results: Two of the 7 selected studies found tetracyclines to reduce all-grade rash – doxycycline (74.2% to 57.2%) and tetracycline (75.6–44.5%; $p = 0.046$). Two found tetracyclines did not reduce all-grade rash but were effective in reducing high-grade rash – doxycycline (19–4%; $p < 0.001$) and minocycline (28–12%; $p = 0.0455$). Single-arm studies reported varying rash incidences rates with minocycline (from 44.8% to 68.3%), inferior to those found in the major trials used for comparison (67% and 77.7%).

Conclusion: Oral tetracyclines appear to reduce the incidence of all-grade acneiform rash or, alternatively, to decrease the incidence of high-grade rash. Preventive treatment for acneiform rash at the initiation of epidermal growth factor receptor tyrosine kinase inhibitor therapy should therefore be considered. Further controlled trials are needed to confirm the efficacy of oral tetracyclines in preventing acneiform rash.

Introduction

Q3 Lung cancer is the 2nd most common type of cancer worldwide, excluding non-melanoma skin cancer, being the leading cause of death from cancer. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer,¹ accounting for nearly 80% of all lung cancer cases, according to the American Lung Association.

A particular group of NSCLC patients exhibit mutations in the epidermal growth factor receptor (EGFR) and these mutations typically occur in exons 18–21 of the tyrosine kinase domain of the receptor. These sensitizing mutations make these EGFR mutated tumours sensitive to the EGFR tyrosine kinase inhibitors (TKIs),¹ making this class of drugs the first-line therapy for EGFR mutated NSCLC.

Although this class of drugs is generally well tolerated, it has some important cutaneous adverse effects, such as acneiform rash, xerosis and paronychia² that can significantly affect the patient's quality of life and lead to dose reduction or in more severe cases, treatment interruption, and have a serious impact on the patients' prognosis. In several reported trials with different generation EGFR TKIs, more than 50% of the patients were affected by any grade of acneiform rash, and around 15% with grade > 3 acneiform rash.^{3–6} This rash consists of papules and pustules, often pruritic and painful, most commonly appearing on the scalp, face, neck and upper trunk⁷ 1–3 weeks into therapy.⁸ Accord-

Abbreviations: CNS, central nervous system; CTCAE, Common Terminology Criteria for Adverse Events; EGFR, epidermal growth factor receptor; ESMO, European Society for Medical Oncology; G ≥2, grade 2 or higher; G2, grade 2; G3, grade 3; NSCLC, non-small cell lung cancer; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; QoL, quality of life; RCT, randomized controlled trial; RoB 2, cochrane risk-of-bias tool for randomized trials; RoBANS 2, Risk of Bias Assessment Tool for Non-randomized Studies; TKI, tyrosine kinase inhibitor; WT, wild-type.

* Corresponding author.

Q1 E-mail address: up201704666@up.pt (R. Sousa).

<https://doi.org/10.1016/j.ad.2025.104583>

Received 17 June 2025; Accepted 13 July 2025

Available online xxx

0001-7310/© 2025 Published by Elsevier España, S.L.U. on behalf of AEDV. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

ing to the Common Terminology Criteria for Adverse Event (CTCAE) v5.0, acneiform rash can be categorized into 5 grades. Grades 1–5 vary in terms of percentage of body surface area and associated symptoms. Further details on the grading of acneiform rash can be found in the supplementary data. Acneiform rash has a substantial impact on patients' psychosocial well-being, significantly reducing quality of life, and may be associated with secondary skin infections. In severe cases (grade ≥ 3), it can lead to dose modifications in approximately 70% of patients and treatment discontinuation in up to 30%.^{9,10}

The mechanism through which these drugs cause skin toxicity can be explained by the presence of EGFR in epithelial tissues, where it functions in normal cellular processes, such as proliferation, differentiation, and development,¹¹ and its inhibition prevents intracellular phosphorylation, inhibiting further signalling cascades, promoting inflammatory processes that lead to cutaneous toxicity.^{12,13}

First-generation EGFR TKIs, such as erlotinib and gefitinib are characterized by their dose-dependent toxicity resulting from the reversible inhibition of wild-type (WT) EGFR.¹¹ The second-generation EGFR TKIs, such as afatinib and dacomitinib, bind irreversibly to EGFR and are associated with a higher incidence rate and severity of adverse events vs the recommended doses of first-generation EGFR TKIs.¹⁴ The third generation EGFR TKI, osimertinib, is an irreversible EGFR-TKI and is selective for both EGFR and T790M resistance mutations with activity in the central nervous system (CNS).¹⁵ It is known for causing less dermatologic side effects vs 1st- and 2nd-generations, as it spares WT EGFR.¹¹

Reactive and preventive measures can act upon these dermatological adverse effects. Some of the preventive measures established in the 2021 ESMO clinical practice guidelines for dermatological toxicities related to anticancer agents include avoiding skin irritation with frequent washing with hot water, anti-acne drugs, disinfectants and excessive sun exposure, skin care measures with alcohol free moisturizers and sun protection products and finally, pharmacological measures with oral tetracyclines such as doxycycline and minocycline and, optionally, concomitant treatment with topical corticosteroids, as their benefit is still under discussion.¹⁶ According to these guidelines, these measures reduce the incidence of grade 2 or higher ($\geq G2$) acneiform rash. In this systematic review, we aimed to evaluate the role of prophylactic oral tetracyclines in reducing the incidence of acneiform rash of any grade in patients with non-small cell lung cancer receiving epidermal growth factor receptor tyrosine kinase inhibitors. Secondarily, we assessed the impact of acneiform rash on dose reduction and treatment discontinuation and examined whether prophylactic oral tetracycline therapy influences these outcomes.

Methods

Eligibility criteria

This study included randomized controlled trials (RCTs), prospective open-label trials and single-arm prospective studies. The language in which it was written was restricted to English. The search was limited to studies published from 2005 through 2025, as the first scientific evidence supporting the efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of non-small cell lung cancer emerged around 2003. Since then, both their clinical use and the body of evidence have evolved substantially. Accordingly, a 20-year time frame was considered appropriate and sufficiently comprehensive for the purposes of this study. The studies were included if they had patients with NSCLC who were about to initiate treatment with EGFR TKIs (erlotinib, gefitinib, afatinib, dacomitinib, osimertinib) and were starting at the same time, a preventive treatment with oral tetracyclines due to the appearance of acneiform rash. Studies in which the primary or secondary endpoint was the incidence of acneiform rash were included, whereas studies evaluating exclusively topical preven-

tive treatments were excluded. The primary outcome assessed was the incidence of acneiform rash of any grade.

Search strategy

A search across the scientific databases PubMed, Cochrane and Web of Science was conducted on January 2025, by 2 authors, using the following terms: “(Prophylactic Treatment OR Preventive treatment OR Pre-emptive treatment) AND Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor AND (Skin Toxicities OR Acneiform eruption OR Acneiform Rash) AND Non-small Cell Lung Cancer”. Additionally, citations from relevant articles were read as well. A screening phase was conducted by both authors, reading the title and abstract of all extracted articles from the search. From there, all screened articles were assessed for eligibility and were fully read. Those that met the inclusion criteria were included in the review.

Data collection

Data extracted from each study included the incidence of acneiform rash of any grade and of grade 2 or higher, for both the control and intervention arms, which were subsequently compared. Three included studies lacked a control arm; therefore, the incidence of acneiform rash of any grade in these studies was analyzed and compared with rates reported in major clinical trials, including ARCHER 1050¹⁷ and LUX-Lung 8.⁵ Acneiform rash of any grade was defined as grade 0–5 rash and encompassed various reported terms, including acneiform rash,¹⁸ rash/acne,¹⁹ skin rash,²⁰ rash and dermatitis acneiform,²¹ rash/folliculitis,²² and rash.^{23,24} In addition, data were collected on the proportion of patients who required dose reduction or treatment discontinuation of epidermal growth factor receptor tyrosine kinase inhibitor therapy, as well as intervention characteristics, including oral tetracycline dosage, duration of prophylactic treatment, type of epidermal growth factor receptor tyrosine kinase inhibitor used, and its dosage.

Risk of bias

To assess the quality of included trials 2 different tools were used. The version 2 of the cochrane risk-of-bias tool for randomized trials (RoB 2) was applied to assess the risk of bias of the RCTs and the prospective open-label trials with both control and experimental groups and version 2 of The Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS 2) for the non-randomized, prospective single-arm trials.

Results

Study selection

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) process was followed and the exclusion of the studies at each stage are shown in the flowchart (Fig. 1). A total of 55 articles were retrieved from this search and 5 more after reading the citations of relevant articles. After reading title and abstract, a total of 47 articles were excluded, 9 articles were fully read and assessed for eligibility and finally 7 were included in the review. The excluded trials^{25,26} appeared to meet all the inclusion criteria; however, they included both NSCLC and GI cancer patients, and treatment with both EGFR TKIs and anti-EGFR monoclonal antibodies, such as cetuximab, without reporting cancer type-specific results, thereby precluding further analysis.

Included trials

We included a total of 7 trials in our systematic review. All the trials tested for the preventive treatment with oral tetracyclines—4 with minocycline, 2 with doxycycline and 1 with tetracycline—in patients

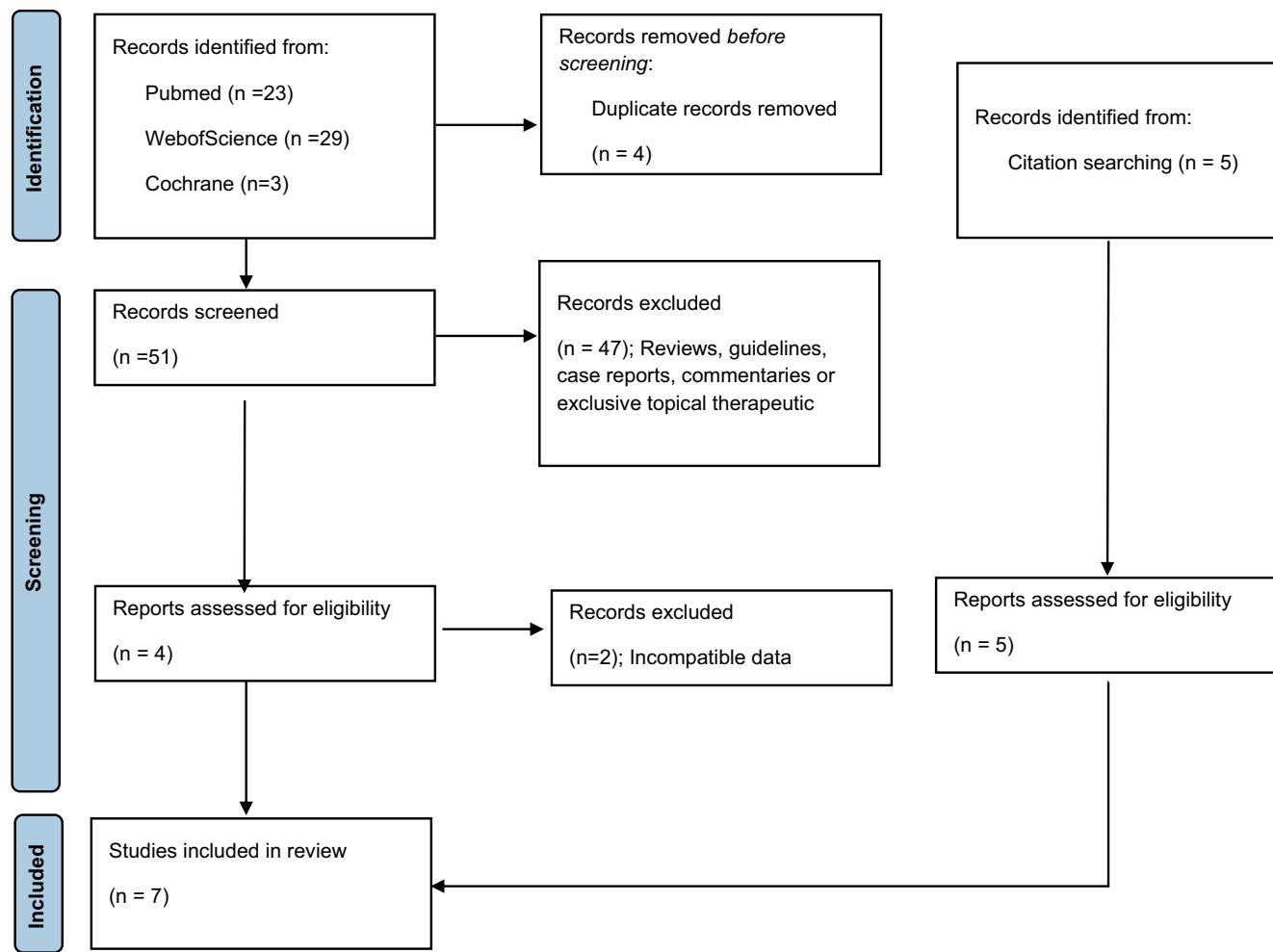


Fig. 1. PRISMA flow-chart.

151 with NSCLC on EGFR TKIs, such as erlotinib, afatinib and dacomitinib.
 152 Table 1 illustrates the characteristics of the included studies.

153 Quality of included trials

154 The results of the risk of bias assessment using version 2 of the
 155 cochrane risk-of-bias tool for randomized trials (RoB 2) and version 2 of
 156 The Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS
 157 2) are shown in Figs. 2 and 3, respectively.

158 The studies assessed through RoB2 had an overall low risk of bias.
 159 Deplanque et al.,²² Arrieta et al.,²³ and Melosky et al.,²⁴ are open-label
 160 trials with a higher risk of observer bias. The single-arm studies, assessed
 161 through RoBANS2, have inevitably a higher risk of confounding due to
 162 the lack of a comparable control group. Furthermore, they have a higher
 163 risk of observer bias due to their open label nature.

164 Synthesis of the results

165 In 4 of the included trials, the incidence rate of all-grade rash was
 166 evaluated and compared between the experimental group on preventive
 167 therapy with oral tetracyclines for acneiform rash and the control group,
 168 without any form of preventive therapy. The prophylactic intervention
 169 was initiated at the start of the EGFR TKI therapy in all trials. The duration
 170 of prophylactic therapy until the evaluation of skin toxicities varied
 171 across trials (from 4 to 16 weeks), and it is showed individually for each
 172 trial in Table 1.

173 Doxycycline in the dosage of 100 mg twice daily was effective
 174 preventing the acneiform rash in Lacouture et al.²¹ in patients on
 175 dacomitinib, reducing the incidence rate of all-grade rash from 74.2% in
 176 the control group to 57.2% in the doxycycline group, and with a relative
 177 risk of rash and dermatitis acneiform of 0.62 and 0.39, respectively. The
 178 G ≥ 2 rash incidence rate reported in the control group was 31% and in
 179 the doxycycline group, 16.1%. In the study by Deplanque et al.,²² among
 180 patients receiving erlotinib with prophylactic doxycycline 100 mg daily,
 181 the difference in the incidence of all-grade rash between the control
 182 group and the doxycycline group was not statistically significant (81%
 183 vs 71%; $p = .18$). Doxycycline decreased the rate of severe rash, with
 184 an incidence rate of grade 3 (G3) rash of 19% in the control arm and
 185 4% in the doxycycline arm ($p < 0.001$). These results are shown in
 186 Table 2.

187 Tetracycline, in the dosage of 250 mg administered twice daily
 188 reduced the incidence rate of any grade rash (75.6% vs 44.5%;
 189 $p = 0.046$) and G ≥ 2 rash (35.6% vs 15.6%; $p = 0.030$) in Arrieta et
 190 al.²³ in patients on afatinib. These results are shown in Table 3.

191 For minocycline in the dosage of 100 mg twice daily, Melosky et al.²⁴
 192 did not find a reduction in the incidence rate of all-grade rash in patients
 193 on erlotinib between the prophylactic treatment arm and the control
 194 arm (82 vs 84%; $p = 0.8769$). However, the incidence rate of G3 rash
 195 was significantly different between the control arm and the prophylactic
 196 treatment arm (28% and 12%, respectively; $p = 0.0455$).

197 Minocycline, 100 mg daily was the prophylactic treatment of the
 198 single-arm prospective studies included in this review. Prophylactic
 199 treatment was initiated at the same time as the EGFR TKI therapy in

Table 1
Characteristics of included studies.

Study	Year	Patients	Type of study	EGFR TKI	Type of cancer	Treatment	Duration (weeks)	Control group	Skin toxicity criteria	Incidence of all grade rash	Incidence of G ≥ 2 rash
Iwasaku et al. ¹⁸	2023	41	Prospective open label	Dacomitinib	NSCLC	Minocycline 100 mg daily	8	Single arm	NCI CTCAE	68.3%	26.8%
Okajima et al. ¹⁹	2021	46	Prospective study	Afatinib	NSCLC	Minocycline 100 mg daily, loperamide 2 mg daily, topical medium-class steroids, and gargling with sodium azulene	4	Single arm	NCI CTCAE	50.00%	20%
Ichiki et al. ²⁰	2017	29	Prospective multicenter trial	Afatinib	NSCLC	Minocycline 50 mg twice daily and TJ-14 7.5 daily	4	Single arm	NCI CTCAE	44.8%	3.4%
Lacouture et al. ²¹	2016	122	RCT	Dacomitinib	NSCLC	Doxycycline 100 mg twice daily	4	Placebo	NCI CTCAE	57.2%	Doxycycline group: 16.1%
Deplanque et al. ²²	2016	147	Prospective open label	Erlotinib	NSCLC	Doxycycline 100 mg daily	16	No therapy	NCI CTCAE	Control group: 74.2%	Control group: 31%
Arrieta et al. ²³	2015	90	Prospective open label	Afatinib	NSCLC	Tetracycline 250 mg twice daily	4	No therapy	NCI CTCAE	Doxycycline group: 71%	Doxycycline group: 4%
Melosky et al. ²⁴	2015	150	Prospective open label	Erlotinib	NSCLC	Minocycline 100 mg twice daily versus reactive treatment with topical clindamycin plus hydrocortisone	4	No therapy	NCI CTCAE	Control group: 81%	Control group: 19%
										Tetracycline group: 44.5%	Tetracycline group: 15.5%
										Control group: 75.6%	Control group: 35.6%
										Minocycline group: 84%	Minocycline group: G3
										Reactive treatment group: 84%	Reactive treatment group: 12%
										Control group: 82%	Control group: 8%
										Control group: 28%	Control group: 28%

NSCLC, non-small cell lung cancer; NCI CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events.

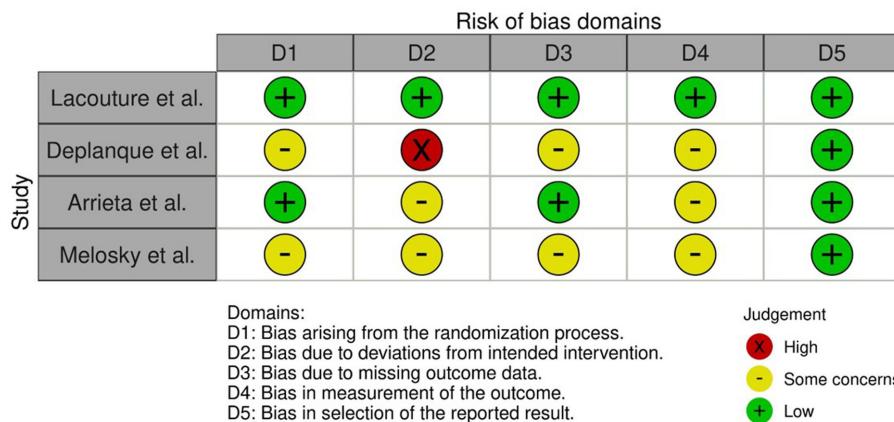


Fig. 2. Risk of bias using RoB2.

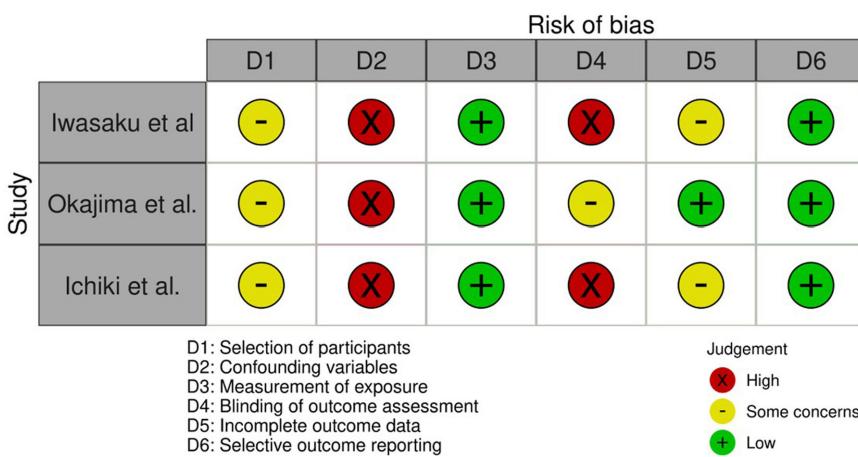


Fig. 3. Risk of bias using RoBANS2.

Table 2
Reduction in the incidence of acneiform rash with doxycycline.

Study	EGFR TKI	Doxycycline dosage	All-grade rash		G ≥ 2 rash	
			Control group	Doxycycline group	Control group	Doxycycline group
Lacouture et al.	Dacomitinib	100 mg 2×/day	74.2%	57.2%	31%	16.10%
Deplanque et al.	Erlotinib	100 mg/day	81%	71% ($p = 0.18$)	(G3) 19%	4% ($p < 0.001$)

Table 3
Reduction in the incidence of acneiform rash with tetracycline.

Study	EGFR TKI	Minocycline dosage	All-grade rash		G ≥ 2 rash	
			Control group	Minocycline group	Control group	Minocycline group
Arieta et al.	Afatinib	250 mg 2×/day	75.60%	44.5% ($p = 0.046$)	35.6%	15.6% ($p = 0.030$)
Jatoi et al.	Gefitinib, Cetuximab, others	500 mg/day	76%	70% ($p = 0.61$)	55%	17% ($p = 0.009$)

all these trials. Okajima et al.¹⁹ and Ichiki et al.²⁰ assessed prophylactic treatment with minocycline in patients on afatinib. They found incidence rates of all-grade rash of 50% and 44.80%, respectively, and an incidence rate of G ≥ 2 rash of 20% and 3.4%, respectively. The incidence rate of all-grade rash in the *Lux-Lung 8*⁵ trial was 67% and the incidence rate of G ≥ 2 was 6%. This was a trial with patients with NSCLC

on afatinib in whom no prophylactic measures for skin adverse effects were taken.

Iwasaku et al.¹⁸ tested prophylactic treatment with 100 mg of minocycline in patients on dacomitinib. The incidence rate of all-grade rash was 68.3% (26.8% for G ≥ 2). In the *ARCHER 1050*¹⁷ trial, the incidence rate of all-grade rash in patients on dacomitinib and without

any form of prophylactic treatment for dermatologic adverse effects was 77.7% (25.3% for G ≥ 2). The results regarding minocycline are shown in Table 4.

Furthermore, dose reduction and treatment discontinuation were analyzed across the studies and the data is shown in Tables 5 and 6. The available data were somewhat heterogeneous. In 3 randomized clinical trials,^{22,23} information on dose reductions was reported for both the control and intervention groups, without specification of the underlying cause. Dose reduction was higher in the control group vs the experimental group in Deplanque et al.²² [43% vs 25% ($p = 0.02$)]. In Arrieta et al.,²³ however, dose reduction was lower in the control group vs the experimental group [46.6% vs 53.4% ($p = 0.378$)], as well as in Lacouture et al.²¹ (24.2% vs 28.8%). In the study by Melosky et al.,²⁴ the percentages of dose reduction and treatment discontinuation were not reported. In the single-arm studies, we found that in Iwasaku et al.,¹⁸ dose reduction occurred in 19.5% of patients due to skin toxicities, and in 14.6% of these due to acneiform rash. In the study by Okajima et al.,¹⁹ dose reduction occurred in 58.7% of patients for all causes, with 13% attributable to acneiform rash. In the study by Ichiki et al.,²⁰ an overall dose reduction rate of 62% was reported, without further specification.

Data of treatment discontinuation was available in Iwasaku et al.,¹⁸ occurring in 22.2% of patients due to disease progression; in Okajima et al.,¹⁹ occurring in 13% of patients due to G4 transaminase elevation, G3 ileitis, G2 paronychia, G2 decrease appetite and G2 diarrhoea, and in Lacouture et al.²¹ occurring in 22.7% of patients from the control group and 18.2% of patients from the experimental group, without specification of the cause.

Discussion

Summary of evidence

This systematic review included a total of 7 trials, all testing for the prevention of skin toxicities with oral tetracyclines in patients with NSCLC on EGFR TKIs.

Among the 4 trials comparing a control arm with an oral tetracycline arm, 2 demonstrated a significant reduction in the incidence of all-grade rash with oral tetracyclines. In the remaining 2 trials, the difference in all-grade rash incidence between groups was not statistically significant; however, prophylactic treatment was associated with a reduced incidence of severe rash. All comparative trials reported oral tetracyclines to be well tolerated. In the single-arm studies, the overall incidence of all-grade rash was lower than that reported in the major comparator trials, ARCHER 1050¹⁷ and LUX-Lung 8.⁵ Oral tetracyclines were also well tolerated in these studies.

Regarding dose reduction and treatment discontinuation, the heterogeneity of the results makes it difficult to analyze any possible patterns.

We can state that there is a significant percentage of patients who undergo dose reduction when on EGFR TKIs and an important part is due to skin toxicities, such as acneiform rash. Thus, dose reduction is a real issue with this therapy. Regarding the impact of tetracyclines in dose reduction, one trial found that the group exposed to oral tetracyclines had less dose reductions and 2 found the control group to have less dose reductions, so we cannot securely state that oral tetracyclines reduce the percentage of dose reduction in these patients.

Treatment discontinuation is also an important issue. It occurs in a significant percentage of patients. In our review, 1 trial found that in patients on prophylactic treatment with oral tetracyclines there was a smaller percentage of treatment discontinuation vs the control group.

When a patient is starting treatment with an EGFR TKI, the possibility of developing a rash, and even a severe rash is >50% and 15% respectively. Reducing the chances of this event should be a priority for the physician since these adverse effects have such an impact on patients' lives and can strongly affect treatment adherence. Taking into consideration that oral tetracyclines are well tolerated by patients, start-

ing an oral tetracycline concomitantly with EGFR TKI treatment should be considered by their physicians.

Limitations

This study is a systematic review without meta-analysis, which has on its own several limitations. A meta-analysis was not performed because of heterogeneity in the extracted data and insufficient data for pooling. This decision inevitably limited the statistical power of the review – a qualitative analysis was performed, making it harder to identify overall trends or even the size of the effects across the studies. The studies included had different outcome measures and different primary and secondary endpoints, making it challenging to draw definitive conclusions; our interpretation is more prone to bias vs a meta-analysis, since conclusions depend on a qualitative assessment rather than statistical aggregation; there is no formal assessment of heterogeneity without the meta-analysis that could provide this assessment through statistical tests such as I^2 ; publication bias was not assessed either; finally, without the meta-analysis it is harder to generalize our conclusions, making it harder for physicians to rely on them.

Moreover, our trials assessed prophylactic treatment with different oral tetracyclines – 4 with minocycline, 2 with doxycycline and 1 with tetracycline-, and the dosage of each antibiotic also deferred from minocycline – 50 mg twice daily, 100 mg daily and 100 mg twice daily-, doxycycline – 100 mg daily and 100 mg twice daily-, and tetracycline 250 mg twice daily. This heterogeneity makes it difficult to assess the true preventive effect of oral tetracyclines, producing confounding by type of tetracycline and its dosage and performance bias.

Furthermore, 3 of our included studies were single-arm prospective studies, and we have no control group to draw comparisons and conclusions. We qualitatively analyzed and compared the incidence rate of all-grade rash with major trials such as ARCHER1050¹⁷ and Lux-Lung 8.⁵ The absence of direct comparisons limits the ability to attribute differences in rash incidence solely to the intervention rather than to potential confounding factors, such as patient characteristics. Moreover, comparisons with major trials may involve dissimilar populations, which could influence outcome incidence and result in overestimation or underestimation of the effect of prophylactic oral tetracycline treatment.

Aside from dose reduction and treatment discontinuation, the impact on QoL would have been an interesting parameter to analyze. However, only 2 of our studies had QoL data, which is the reason why we decided to not include this parameter. Regarding dose reduction and treatment discontinuation, the heterogeneity of the collected data did not allow us to draw clear conclusions.

In addition, in our search we did not find any study or trial testing for the preventive therapy of acneiform rash or any form of skin toxicity in patients on osimertinib, which is currently the first-line therapy for EGFR mutated NSCLC.

There is, however, an ongoing phase II trial²⁷ assessing the impact of enhanced management of patients on oral tetracyclines – doxycycline and minocycline – on first-line amivantamab, an anti-EGFR and anti-MET antibody that seems to have an even bigger risk of skin toxicity.

Conclusions

Acneiform rash is among the most common side effects of EGFR TKI therapy, affecting the patients' quality of life and leading to dose reduction or even treatment discontinuation when the rash is severe. Oral tetracyclines, which are generally well tolerated, appear to reduce the incidence of all-grade rash or, alternatively, to decrease the incidence of high-grade rash. Preventive treatment for acneiform rash at the initiation of epidermal growth factor receptor tyrosine kinase inhibitor therapy should therefore be considered.

Table 4

Reduction in the incidence of acneiform rash with minocycline.

Study	EGFR TKI	Minocycline dosage	All-grade rash		G ≥ 2 rash	
			Control group	Minocycline group	Control group	Minocycline group
Melosky et al.	Erlotinib	100 mg 2x/day	82.00%	84% (p = 0.9769)	(G3) 28%	12% (p = 0.0455)
Lux-Lung 8						
Study	EGFR TKI	Minocycline dosage	All-grade rash	G ≥ 2 rash	All-grade rash	G ≥ 2 rash
Okajima et al.	Afatinib	100 mg/day	50%	20%	67%	6%
Ichiki et al.	Afatinib	100 mg/day	44.80%	3.4%		
Archer 1050						
Iwasaku et al.	Dacomitinib	100 mg/day	68.3%	26.8%	77.7%	25.3%

Table 5

Results of dose reduction and treatment discontinuation of single-arm studies.

	% Dose reduction			
	Overall (n)	Due to skin toxicities (n)	Due to acneiform rash (n)	Treatment Discontinuation
Iwasaku et al.	–	19.5% (8)	14.6% (6)	22.2% (9)
Okajima et al.	58.7% (27)	–	13% (6)	13% (6)
Ichiki et al.	62% (18)	–	–	–

Table 6

Results on dose reduction and treatment discontinuation of RCTs.

	% dose reduction (n)		% Treatment discontinuation (n)	
	Control group	Experimental group	Control group	Experimental group
Lacouture et al.	24.2% (16)	28.8% (19)	22.7% (15)	18.2% (12)
Deplanque et al.	43%	25% [$p = 0.02$]	–	–
Arrieta et al.	46.6%	53.4% [$p = 0.378$]	–	–

The 2021 ESMO clinical practice guidelines on the management of dermatological toxicities associated with anticancer therapies shed light on the importance of addressing this issue when initiating therapy with EGFR TKIs, stating that these measures can decrease the incidence rate of $G > 2$ rash.¹⁶ Given the heterogeneity of the included trials and their results, further investigation through prospective, controlled studies is needed to clarify the role of prophylactic oral tetracyclines in reducing the incidence of all-grade rash and to inform the development of robust guidelines and protocols for the prevention of skin toxicity, thereby supporting broader implementation of these preventive measures.

344 Furthermore, we acknowledge that more recent studies on the
345 upcoming and first-line therapies are required to confirm the safety and
346 efficacy profile of oral tetracyclines in the prevention of acneiform rash,
347 as well as its impact on the percentage of dose reduction and treatment
348 discontinuation.

349 Authors contribution

350 Rita Sousa: The study concept and design; writing of the manuscript
351 or critical review of important intellectual content; critical review of the
352 literature; final approval of the final version of the manuscript.

353 Bárbara Vieira Granja: Intellectual participation in the propaedeutic
354 and/or therapeutic conduct of the studied cases; critical review of the
355 literature; final approval of the final version of the manuscript.

Sofia Magina: Intellectual participation in the propaedeutic and/or therapeutic conduct of the studied cases; critical review of the literature; final approval of the final version of the manuscript.

Financial support

None declared.

Conflicts of interest

None declared.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.ad.2025.104583](https://doi.org/10.1016/j.ad.2025.104583).

References

1. Miao D, Zhao J, Han Y, et al. Management of locally advanced non-small cell lung cancer: state of the art and future directions. *Cancer Commun (Lond)*. 2024;44:23–46. <https://dx.doi.org/10.1002/cac2.12505>. Epub 2023 Nov 20. PMID: 37985191; PMCID: PMC10794016.
2. Zhao Y, Cheng B, Chen Z, et al. Toxicity profile of epidermal growth factor receptor tyrosine kinase inhibitors for patients with lung cancer: a systematic review and network meta-analysis. *Crit Rev Oncol Hematol*. 2021;160.

374 <http://dx.doi.org/10.1016/j.critrevonc.2021.103305>. Epub 2021 Mar 20. PMID: 33757838.

375 3. Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. *Lancet Oncol*. 2014;15:213–222, [http://dx.doi.org/10.1016/S1470-2045\(13\)70604-1](http://dx.doi.org/10.1016/S1470-2045(13)70604-1). Epub 2014 Jan 15. PMID: 24439929.

381 4. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. *Lancet Oncol*. 2012;13:239–246, [http://dx.doi.org/10.1016/S1470-2045\(11\)70393-X](http://dx.doi.org/10.1016/S1470-2045(11)70393-X).

386 5. Soria JC, Felip E, Cobo M, et al. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. *Lancet Oncol*. 2015;16:897–907, [http://dx.doi.org/10.1016/S1470-2045\(15\)00006-6](http://dx.doi.org/10.1016/S1470-2045(15)00006-6). Epub 2015 Jul 5. PMID: 26156651.

391 6. Cheng Y, Mok TS, Zhou X, et al. Safety and efficacy of first-line dacomitinib in Asian patients with EGFR mutation-positive non-small cell lung cancer: results from a randomized, open-label, phase 3 trial (ARCHER 1050). *Lung Cancer*. 2021;154:176–185, <http://dx.doi.org/10.1016/j.jlungcan.2021.02.025>. Epub 2021 Feb 23. PMID: 33721611.

396 7. Obradovic J, Todosijevic J, Jurisic V. Side effects of tyrosine kinase inhibitors therapy in patients with non-small cell lung cancer and associations with EGFR polymorphisms: a systematic review and meta-analysis. *Oncol Lett*. 2022;25:62, <http://dx.doi.org/10.3892/ol.2022.13649>. PMID: 36644136; PMCID: PMC9827468.

401 8. Gorji M, Joseph J, Pavlakis N, Smith S. Prevention and management of acneiform rash associated with EGFR inhibitor therapy: a systematic review and meta-analysis. *Asia-Pac J Clin Oncol*. 2022;18:526–539, <http://dx.doi.org/10.1111/ajco.13740>.

406 9. Balaguta Y, Garbe C, Myskowski PL, et al. Clinical presentation and management of dermatological toxicities of epidermal growth factor receptor inhibitors. *Int J Dermatol*. 2011;50:129–146, <http://dx.doi.org/10.1111/j.1365-4632.2010.04791.x>. PMID: 21244375.

411 10. Lacouture ME, Anadkat MJ, Bensadoun RJ, et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. *Support Care Cancer*. 2011;19:1079–1095, <http://dx.doi.org/10.1007/s00520-011-1197-6>. Epub 2011 Jun 1. PMID: 21630130; PMCID: PMC3128700.

416 11. Singh M, Jadhav HR. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. *Drug Discov Today*. 2018;23:745–753, <http://dx.doi.org/10.1016/j.drudis.2017.10.004>. Epub 2017 Oct 12. PMID: 29031620.

421 12. Kozuki T. Skin problems and EGFR-tyrosine kinase inhibitor. *Jpn J Clin Oncol*. 2016;46:291–298, <http://dx.doi.org/10.1093/jjco/hv207>. Epub 2016 Jan 29. PMID: 26826719; PMCID: PMC4886131.

426 13. Nanba D, Toki F, Barrandon Y, Higashiyama S. Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. *J Dermatol Sci*. 2013;72:81–86, <http://dx.doi.org/10.1016/j.jdermsci.2013.05.009>. Epub 2013 Jun 13. PMID: 23819985.

431 14. Hsu WH, Yang JC, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. *Ann Oncol*. 2018;29(suppl 1):i3–i9, <http://dx.doi.org/10.1093/annonc/mdy702>. PMID: 29462253.

436 15. Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. *N Engl J Med*. 2017;376:629–640, <http://dx.doi.org/10.1056/NEJMoa1612674>. Epub 2016 Dec 6. PMID: 27959700; PMCID: PMC6762027.

441 16. Lacouture ME, Sibaud V, Gerber PA, et al. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines. *Ann Oncol*. 2021;32:157–170, <http://dx.doi.org/10.1016/j.annonc.2020.11.005>. Epub 2020 Nov 25. PMID: 33248228.

446 17. Cheng Y, Mok TS, Zhou X, et al. Safety and efficacy of first-line dacomitinib in Asian patients with EGFR mutation-positive non-small cell lung cancer: results from a randomized, open-label, phase 3 trial (ARCHER 1050). *Lung Cancer*. 2021;154:176–185, <http://dx.doi.org/10.1016/j.jlungcan.2021.02.025>. Epub 2021 Feb 23. PMID: 33721611.

451 18. Iwasaku M, Uchino J, Chibana K, et al. Prophylactic treatment of dacomitinib-induced skin toxicities in epidermal growth factor receptor-mutated non-small-cell lung cancer: a multicenter, phase II trial. *Cancer Med*. 2023;12:15117–15127, <http://dx.doi.org/10.1002/cam4.6184>. Epub 2023 Jun 3. PMID: 37269194; PMCID: PMC10417098.

456 19. Okajima M, Miura S, Watanabe S, et al. A prospective phase II study of multimodal prophylactic treatment for afatinib-induced adverse events in advanced non-small cell lung cancer (Niigata Lung Cancer Treatment Group 1401). *Transl Lung Cancer Res*. 2021;10:252–260, <http://dx.doi.org/10.21037/tlcr-20-649>. PMID: 33569309; PMCID: PMC7867768.

461 20. Ichiki M, Wataya H, Yamada K, et al. Preventive effect of kampo medicine (hangeshashin-to, TJ-14) plus minocycline against afatinib-induced diarrhea and skin rash in patients with non-small cell lung cancer. *Oncot Targets Ther*. 2017;10:5107–5113, <http://dx.doi.org/10.2147/OTT.S145613>. PMID: 29123409; PMCID: PMC5661491.

466 21. Lacouture ME, Keefe DM, Sonis S, et al. A phase II study (ARCHER 1042) to evaluate prophylactic treatment of dacomitinib-induced dermatologic and gastrointestinal adverse events in advanced non-small-cell lung cancer. *Ann Oncol*. 2016;27:1712–1718, <http://dx.doi.org/10.1093/annonc/mdw227>. Epub 2016 Jun 10. PMID: 27287210; PMCID: PMC6279098.

471 22. Deplanque G, Gervais R, Vergnenegre A, et al. Doxycycline for prevention of erlotinib-induced rash in patients with non-small-cell lung cancer (NSCLC) after failure of first-line chemotherapy: a randomized, open-label trial. *J Am Acad Dermatol*. 2016;74:1077–1085, <http://dx.doi.org/10.1016/j.jaad.2016.01.019>. Epub 2016 Mar 4. PMID: 26946985.

476 23. Arrieta O, Vega-González MT, López-Macías D, et al. Randomized, open-label trial evaluating the preventive effect of tetracycline on afatinib induced-skin toxicities in non-small cell lung cancer patients. *Lung Cancer*. 2015;88:282–288, <http://dx.doi.org/10.1016/j.jlungcan.2015.03.019>. Epub 2015 Mar 28. PMID: 25882778.

481 24. Melosky B, Anderson H, Burkes RL, et al. Pan canadian rash trial: a randomized phase III trial evaluating the impact of a prophylactic skin treatment regimen on epidermal growth factor receptor-tyrosine kinase inhibitor-induced skin toxicities in patients with metastatic lung cancer. *J Clin Oncol*. 2016;34:810–815, <http://dx.doi.org/10.1200/JCO.2015.62.3918>. Epub 2015 Nov 16. PMID: 26573073.

486 25. Jatoi A, Rowland K, Sloan JA, et al. Tetracycline to prevent epidermal growth factor receptor inhibitor-induced skin rashes: results of a placebo-controlled trial from the North Central Cancer Treatment Group (N03CB). *Cancer*. 2008;113:847–853, <http://dx.doi.org/10.1002/cncr.23621>. PMID: 18543329; PMCID: PMC3918166.

491 26. Grande R, Narducci F, Bianchetti S, et al. Pre-emptive skin toxicity treatment for anti-EGFR drugs: evaluation of efficacy of skin moisturizers and lymecycline. A phase II study. *Support Care Cancer*. 2013;21:1691–1695, <http://dx.doi.org/10.1007/s00520-012-1715-1>. Epub 2013 Jan 13. PMID: 23314653.

496 27. Janssen Research & Development, LLC Clinical Trial, Janssen Research & Development, LLC; Enhanced Dermatological Care to Reduce Rash and Paronychia in Epidermal Growth Factor Receptor (EGFR)-Mutated Non-Small Cell Lung Cancer (NSCLC) Treated First-line With Amivantamab Plus Lazertinib (COCOON). Unpublished results.