

Review

5 Advances in Artificial Intelligence in Cosmetic Dermatology

6 **Q1** D.E. Pimienta-Rosero ^{a,b}, E.Y. Benavides-Tulcán ^{ID a,b,*}, D.C. Fajardo-Murcia ^{a,b,c}7 ^a Facultad de Salud, Departamento de Medicina Interna, Sección de Dermatología, Universidad del Valle, Cali, Colombia8 ^b Sección de Dermatología, Hospital Universitario del Valle "Evaristo García", Cali, Colombia9 ^c Dermatología Estética, Universidad de Alcalá, Spain

ARTICLE INFO

Keywords:
 Artificial intelligence
 Cosmetic dermatology
 Machine learning
 Deep learning
 Diagnosis
 Personalization
 Dermocosmetics
 Mobile applications
 Clinical devices
 Treatment

ABSTRACT

Artificial intelligence (AI) has evolved from science fiction into a key tool in everyday life. In cosmetic dermatology, it has revolutionized skin assessment and the development of personalized treatments. Advanced algorithms enable the diagnosis of conditions, predict responses to laser therapies, and optimize dermocosmetic formulations. Mobile applications such as Skiana® and PROVEN Beauty® analyze the skin and recommend products, while clinical devices like VISIA® facilitate diagnosis. Machine learning and deep learning models enhance accuracy in detecting dermatological issues but still face challenges such as data biases and clinical validation. As AI advances, it promises to transform cosmetic dermatology with more efficient and personalized approaches.

12 Introduction

13 **Q2** Since the 20th century, the hypothesis has been proposed that
 14 machines could simulate human behaviour, not only in terms of intelligence but even in emotional processes.¹ This concept has evolved
 15 rapidly over time and has been reflected in popular culture. Films from
 16 the early 2000s, such as *A.I., Bicentennial Man*, and *I, Robot*, portrayed
 17 a distant and almost esoteric future. However, within a span of 10–20
 18 years, productions such as *Ex Machina* and *Her* began to depict a much
 19 closer future, increasingly similar to our present reality. Nevertheless,
 20 the portrayal of artificial intelligence (AI) in cinema does not always
 21 reflect contemporary reality.^{2,3}

22 Currently, AI is already part of daily life. According to data from
 23 the United Nations Development Programme, in countries such as
 24 Colombia, AI is applied across multiple sectors (Fig. 1). Its implementation
 25 has enabled the automation of processes that previously required
 26 manual parameterisation, optimising tasks as diverse as traffic management
 27 and the synchronisation of traffic lights.⁴

28 During the 1950s and the two following decades, AI was limited to
 29 executing single commands. However, since the turn of the millennium,
 30 its complexity has increased substantially, enabling it to interpret and,
 31 eventually, learn from the data it processes.¹

32 The use of AI spans multiple scientific fields, including medicine,
 33 where it promises revolutionary advances in areas such as novel drug
 34 development, diagnostic image interpretation, and even the performance
 35 of high-precision surgical procedures.^{5,6} In dermatology, AI has
 36 applications in dermoscopy and in the clinical assessment of immune-
 37 mediated diseases such as psoriasis and atopic dermatitis. Tools have
 38 even been developed to improve clinical dermatological diagnosis, such
 39 as *bellePRO*. Within cosmetic dermatology, AI facilitates patient follow-
 40 up, provides educational tools, and contributes to the optimisation of
 41 multiple therapeutic strategies.^{7,8}

42 This article presents a review of the application of emerging AI technologies
 43 in the field of cosmetic dermatology.

45 Methodology

46 The study was conducted by a primary reviewer and, in cases of
 47 uncertainty, validated by a second reviewer.

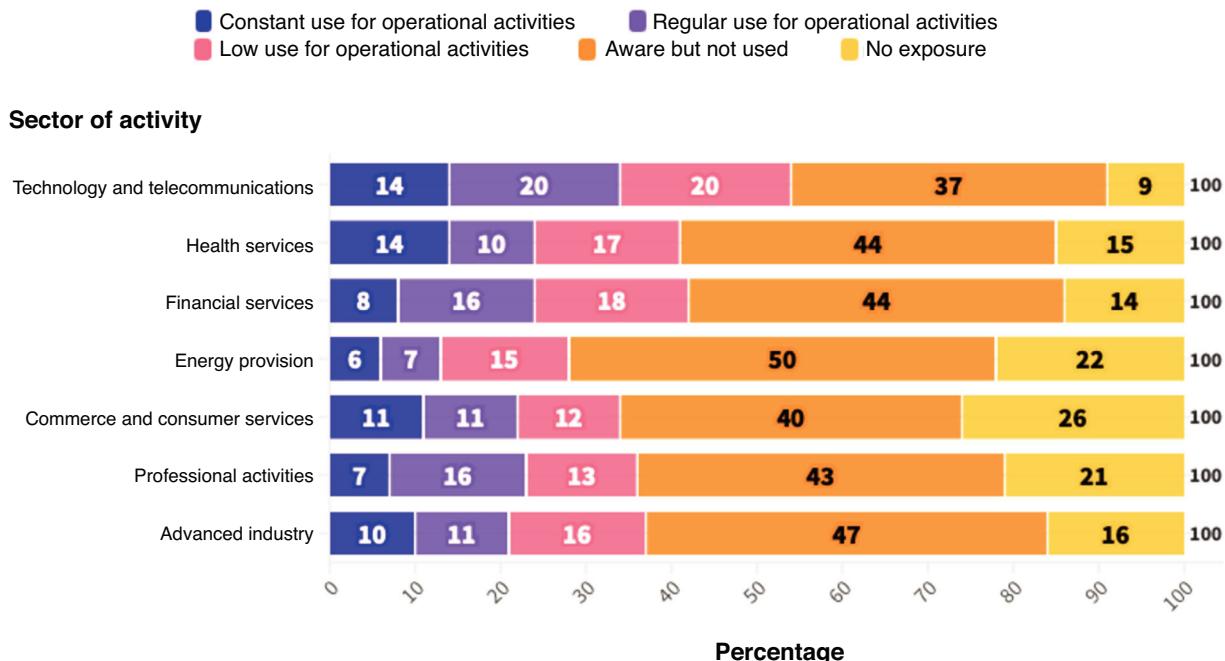
48 Search strategy

49 A narrative review was conducted across three English-language
 50 databases (EMBASE, PubMed, and IEEE Xplore) and one Spanish-
 51 language database (LILACS) from January 2023 through June 2024,
 52 with the aim of identifying articles related to artificial intelligence and
 53 cosmetic dermatology. Search terms included combinations of: "artificial
 54 intelligence", "AI", "AI algorithm", "deep learning", "convolutional

* Corresponding author.

E-mail address: eine.benavides@correounalvalle.edu.co (E.Y. Benavides-Tulcán).

<https://doi.org/10.1016/j.ad.2025.104560>


Received 11 March 2025; Accepted 28 April 2025

Available online xxx

0001-7310/© 2025 AEDV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Percentage of Generative Artificial Intelligence Use by Sector of Activity

Developing Countries 2023

Source: UNDP based on McKinsey Global AI Survey 2023

Figure 1. Percentage of generative artificial intelligence use by sector of activity.

Adapted from UNDP: *Implications of Generative Artificial Intelligence in the Colombian labour market*.

55 *neural network*", "inteligencia artificial", "IA", and "redes neuronales".
 56 In addition, specific cosmetic dermatology terms were used: "cosmetic
 57 dermatology", "cosmetic", "dermatology", "dermatología cosmética", and
 58 "dermatología". Articles published in English and Spanish were included.
 59 A manual search was also performed to identify additional relevant arti-
 60 cles, which were incorporated into the references.

Big Data

79 Big Data refers to data sets that are too large or complex to be pro-
 80 cessed and analysed using conventional technologies. In this context, AI
 81 plays a crucial role by automating data processing and generating more
 82 efficient predictive models.¹⁰
 83

Machine learning

84 Machine learning is a method of developing AI in which the machine
 85 generates its own programming to perform a specific task. This requires
 86 "training" through data input and is classified into three modalities:
 87 supervised, unsupervised, and hybrid.
 88

- 89 **Supervised:** Each data input is assigned a corresponding output.
 90 Through trial and error, the system learns to predict the correct
 91 response.
- 92 **Unsupervised:** Data are analysed without predefined outputs, which is
 93 useful for identifying patterns in large datasets.
- 94 **Hybrid:** Combines both approaches, providing some labelled data and
 95 others unlabelled, thereby reducing the need for manual classifica-
 96 tion.⁹

97 In dermatology, the use of labelled data predominates, as most AI
 98 programmes rely on the analysis of medical images.¹⁰

Deep learning

99 Deep learning is a form of machine learning that employs multi-
 100 ple processing layers. In dermatology, the most widely used technique
 101 is artificial neural networks (ANNs). In these systems, each layer pro-
 102 gressively receives and processes information, enabling the model to be
 103 trained to predict outcomes with increasing accuracy (Fig. 2).⁹

61 Study selection

62 The retrieved results were screened, and only studies evaluating the
 63 relationship between cosmetic dermatology and artificial intelligence
 64 were included. Publications addressing clinical or surgical dermatology
 65 in relation to AI were excluded. Review articles, letters to the editor, and
 66 clinical trials were selected, resulting in a total of 37 articles included
 67 in this review.

68 Results

69 Basic concepts of artificial intelligence

70 Broadly speaking, AI can be classified into two main types: strong
 71 or "general" AI and weak AI. Strong AI refers to machines capable
 72 of performing multiple tasks, possessing ethical awareness, and even
 73 achieving a degree of consciousness, that is, a level of intelligence "sim-
 74 ilar" to that of humans. Although some applications of this type exist,
 75 it remains largely a concept associated with science fiction. By contrast,
 76 weak AI is trained to accomplish a specific objective, and therefore its
 77 programs are designed for concrete tasks. This is the type of AI most
 78 widely used today.^{9,10}

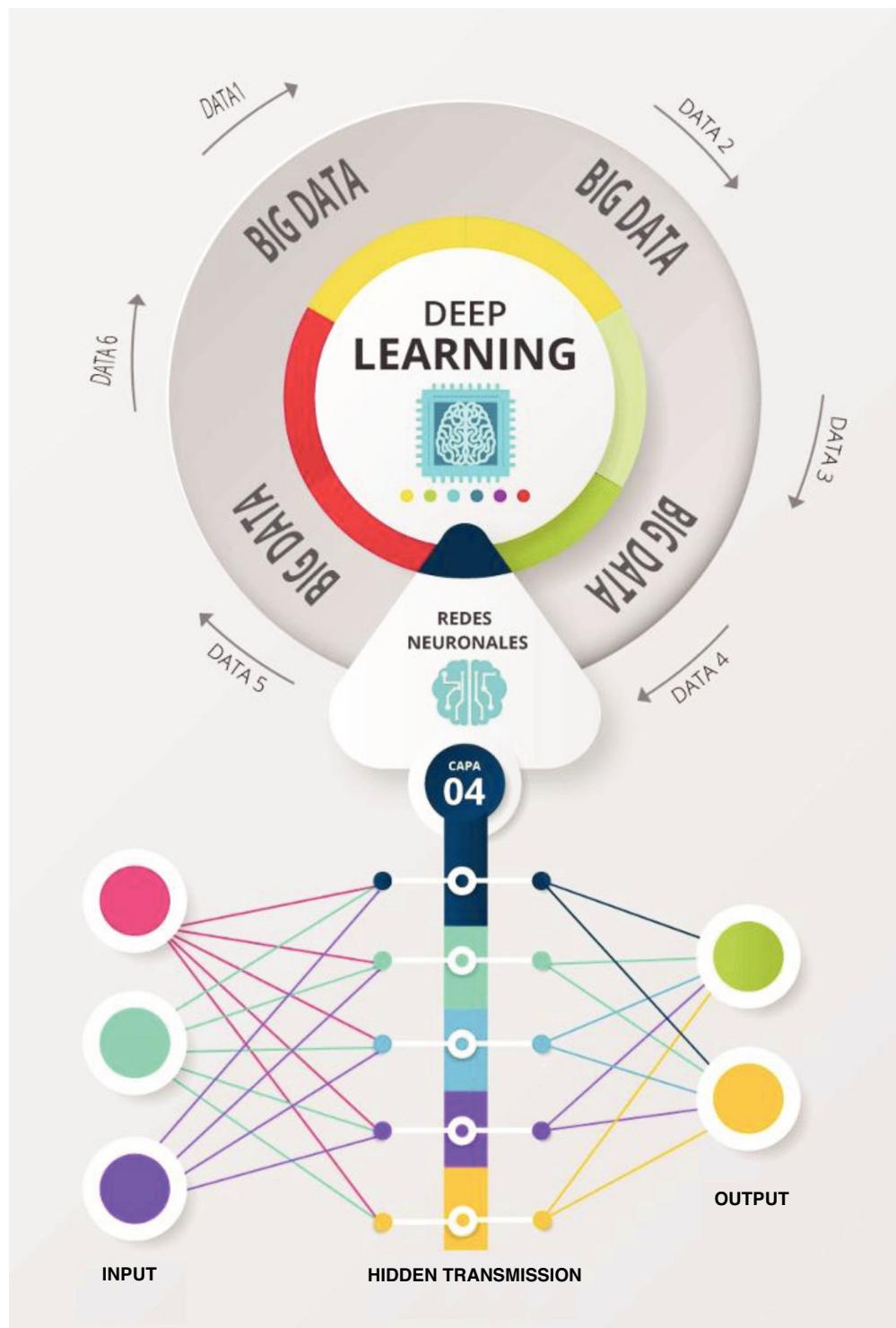
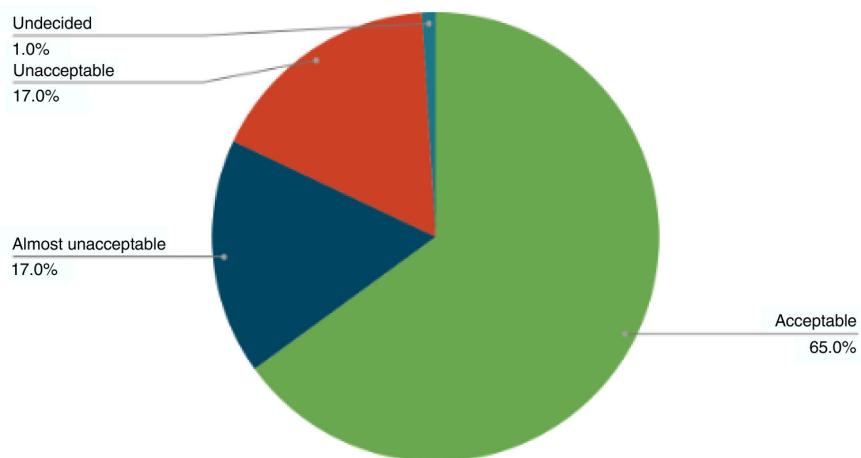


Figure 2. Schematic functioning of neural networks.


105 Overall, when the volume of data is small, machine learning provides
 106 better predictive performance. However, when data volumes become
 107 very large, deep learning surpasses machine learning in both accuracy
 108 and overall performance.¹¹ Given that dermatology relies heavily on
 109 image analysis, the use of artificial neural networks represents the pre-
 110 dominant methodology in this field.⁹

Artificial intelligence and cosmetic dermatology

111
 112 Applications of AI have experienced remarkable growth
 113 in cosmetic dermatology, encompassing multiple areas
 114 of practice and optimising key clinical and industrial
 115 processes.

A

Public opinion on animal experimentation in medical research

B

Public opinion on animal experimentation for dermocosmetic development

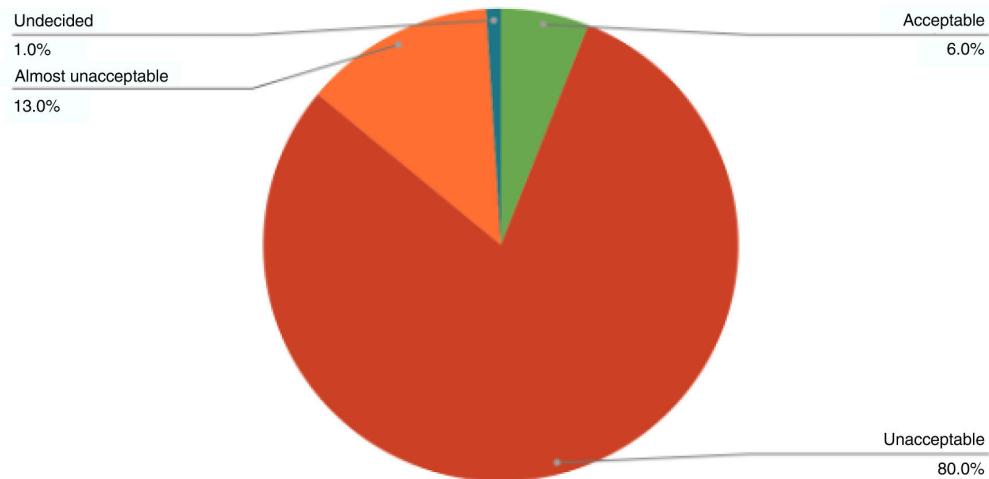


Figure 3. (A and B) Public opinion in the United Kingdom regarding animal experimentation.

Adapted from Kabene et al.

116 **AI in dermocosmetic development**

117 Traditionally, the assessment of the sensitising potential of dermo-
 118 cosmetic substances has been conducted using animal studies, in which
 119 excipients and active ingredients are applied topically or intradermally
 120 to evaluate sensitivity reactions. However, these methods have been
 121 ethically challenged and show low public acceptance, which has led to
 122 increasing regulatory restrictions on their use (Fig. 3A and B).¹²

123 Alternatively, in vitro methods employing tissues or cells to assess
 124 antigenic stimulation have been developed. Although their equivalence
 125 to animal and human studies remains under debate, these tools require
 126 considerable resources. In this context, Kalicinska et al. developed
 127 an AI-based programme using historical epidemiological data, achiev-
 128 ing sensitisation potential predictions comparable to in vitro studies,
 129 although limited by data bias.¹³

130 Over the past decade, multiple machine learning models have also
 131 been developed to predict whether a product exhibits sensitising or

132 comedogenic potential.^{14–18} Given this trend, it is likely that future
 133 dermocosmetic evaluation will increasingly rely on *in silico* simulations
 134 rather than *in vitro* or *in vivo* testing.¹⁹

135 In addition, Yeh et al. designed AI systems capable of identifying
 136 drug combinations that may mitigate cutaneous ageing. Using genetic
 137 and molecular pathway mapping, three networks were constructed: one
 138 encompassing genetic and epigenetic mechanisms, a second analysing
 139 protein interactions, and a third compiling gene regulators. Based on
 140 these datasets, a neural network evaluated medications affecting key
 141 targets, identifying patient-specific combinations according to age. The
 142 predictive accuracy of the model reached 93%.²⁰

143 **AI in mobile and office-based applications for skin care**

144 Several mobile applications have incorporated AI into cosmetic
 145 dermatology. One example is Neutrogena® Skin360™, which uses
 146 smartphone cameras to evaluate hyperpigmentation, periorbital dark

Figure 4. PROVEN Beauty® 3-step routine (cleanser, day cream, night cream).

Source: official website.

circles, rhytides, and skin texture, subsequently providing a score and 147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
553540
553541
553542
553543
553544
553545
553546
553547
553548
553549
553550
553551
553552
553553
553554
553555
553556
553557
553558
553559
553560
553561
553562
553563
553564
553565
553566
553567
553568
553569
553570
553571
553572
553573
553574
553575
553576
553577
553578
553579
553580
553581
553582
553583
553584
553585
553586
553587
553588
553589
553590
553591
553592
553593
553594
553595
553596
553597
553598
553599
553600
553601
553602
553603
553604
553605
553606
553607
553608
553609
553610
553611
553612
553613
553614
553615
553616
553617
553618
553619
553620
553621
553622
553623
553624
553625
553626
553627
553628
553629
553630
553631
553632
553633
553634
553635
553636
553637
553638
553639
553640
553641
553642
553643
553644
553645
553646
553647
553648
553649
553650
553651
553652
553653
553654
553655
553656
553657
553658
553659
553660
553661
553662
553663
553664
553665
553666
553667
553668
553669
553670
553671
553672
553673
553674
553675
553676
553677
553678
553679
553680
553681
553682
553683
553684
553685
553686
553687
553688
553689
553690
553691
553692
553693
553694
553695
553696
553697
553698
553699
553700
553701
553702
553703
553704
553705
553706
553707
553708
553709
553710
553711
553712
553713
553714
553715
553716
553717
553718
553719
553720
553721
553722
553723
553724
553725
553726
553727
553728
553729
553730
553731
553732
553733
553734
553735
553736
553737
553738
553739
553740
553741
553742
553743
553744
553745
553746
553747
553748
553749
553750
553751
553752
553753
553754
553755
553756
553757
553758
553759
553760
553761
553762
553763
553764
553765
553766
553767
553768
553769
553770
553771
553772
553773
553774
553775
553776
553777
553778
553779
553780
553781
553782
553783
553784
553785
553786
553787
553788
553789
553790
553791
553792
553793
553794
553795
553796
553797
553798
553799
553800
553801
553802
553803
553804
553805
553806
553807
553808
553809
553810
553811
553812
553813
553814
553815
553816
553817
553818
553819
553820
553821
553822
553823
553824
553825
553826
553827
553828
553829
553830
553831
553832
553833
553834
553835
553836
553837
553838
553839
553840
553841
553842
553843
553844
553845
553846
553847
553848
553849
553850
553851
553852
553853
553854
553855
553856
553857
553858
553859
553860
553861
553862
553863
553864
553865
553866
553867
553868
553869
553870
553871
553872
553873
553874
553875
553876
553877
553878
553879
553880
553881
553882
553883
553884
553885
553886
553887
553888
553889
553890
553891
553892
553893
553894
553895
553896
553897
553898
553899
553900
553901
553902
553903
553904
553905
553906
553907
553908
553909
553910
553911
553912
553913
553914
553915
553916
553917
553918
553919
553920
553921
553922
553923
553924
553925
553926
553927
553928
553929
553930
553931
553932
553933
553934
553935
553936
553937
553938
553939
553940
553941
553942
553943
553944
553945
553946
553947
553948
553949
553950
553951
553952
553953
553954
553955
553956
553957
553958
553959
553960
553961
553962
553963
553964
553965
553966
553967
553968
553969
553970
553971
553972
553973
553974
553975
553976
553977
553978
553979
553980
553981
553982
553983
553984
553985
553986
553987
553988
553989
553990
553991
553992
553993
553994
553995
553996
553997
553998
553999
5531000
5531001
5531002
5531003
5531004
5531005
5531006
5531007
5531008
5531009
5531010
5531011
5531012
5531013
5531014
5531015
5531016
5531017
5531018
5531019
5531020
5531021
5531022
5531023
5531024
5531025
5531026
5531027
5531028
5531029
5531030
5531031
5531032
5531033
5531034
5531035
5531036
5531037
5531038
5531039
5531040
5531041
5531042
5531043
5531044
5531045
5531046
5531047
5531048
5531049
5531050
5531051
5531052
5531053
5531054
5531055
5531056
5531057
5531058
5531059
5531060
5531061
5531062
5531063
5531064
5531065
5531066
5531067
5531068
5531069
5531070
5531071
5531072
5531073
5531074
5531075
5531076
5531077
5531078
5531079
5531080
5531081
5531082
5531083
5531084
5531085
5531086
5531087
5531088

193 **AI in cosmetic procedures**

194 AI models have been trained to predict patient response to excimer
 195 laser therapy in vitiligo, suggesting that similar models could forecast
 196 the effectiveness of laser treatments for acne scars, dyschromia, and vas-
 197 cular disorders.²¹ Indeed, models capable of predicting laser treatment
 198 response in patients with ephelides have already been implemented.²⁸
 199 Three-dimensional modelling has further enabled prediction of cosmetic
 200 procedure outcomes, particularly for dermal fillers, allowing patients to
 201 visualise potential results prior to treatment.²⁹ Shah et al. demonstrated
 202 the generation of post-rejuvenation 3D facial images using multilayer
 203 neural networks. These models created three-dimensional facial scans
 204 to identify optimal filler injection landmarks and predict precise filler
 205 volumes, achieving 62.5% accuracy – surpassing previously available
 206 techniques.³⁰

207 Predictive modelling also facilitates automation of device para-
 208 meters in procedures such as radiofrequency and microneedling, allowing
 209 real-time adjustment based on pigmentation, texture, curvature, and
 210 other skin characteristics, thereby reducing manual configuration
 211 time.²¹

212 **AI in patient education and follow-up**

213 Moreover, AI has been implemented as an educational tool. Shi et al.
 214 developed an AI-based application, "Skincare Mirror", which predicts
 215 post-treatment skin appearance following product use, providing per-
 216 sonalised visualisation of expected outcomes. This system significantly
 217 improved user engagement and satisfaction, particularly among male
 218 participants.³¹

219 **Risks of artificial intelligence use in cosmetic dermatology**

220 The risks associated with the use of AI in cosmetic dermatology
 221 require careful consideration. One of the most concerning issues is the
 222 potential loss of clinical judgement, as increasing automation of diagno-
 223 sis and treatment could discourage continuous medical education and
 224 critical thinking among professionals. This may compromise the qual-
 225 ity of care and reduce clinicians' ability to manage atypical cases or
 226 complex decision-making. Furthermore, inappropriate or unsupervised
 227 use of AI systems may jeopardise patient safety, particularly in sensi-
 228 tive medical decisions. Another major risk lies in the subjectivity of
 229 aesthetic concepts such as beauty and skin quality, which may lead to
 230 inappropriate, unethical, or culturally biased recommendations.³²

231 **Limitations of artificial intelligence in cosmetic dermatology**

232 The principal limitations of AI in cosmetic dermatology relate to the
 233 quality and representativeness of training datasets. Many algorithms are
 234 developed using datasets that are small, low quality, or insufficiently
 235 diverse, limiting their generalisability in clinical practice.³³ Moreover,
 236 current AI models lack continuous learning mechanisms comparable
 237 to the cumulative experience of human clinicians. AI also struggles
 238 with image interpretation in anatomically complex areas such as the
 239 scalp, mucosal surfaces, and regions affected by tattoos or makeup,
 240 thereby restricting its applicability in real-world scenarios.³⁴ Finally,
 241 the absence of standardised criteria for measuring aesthetic attributes
 242 hinders the development of accurate and personalised algorithms.^{35,36}

243 **Regulatory and implementation barriers in cosmetic dermatology**

244 From a regulatory perspective, the application of AI in dermatol-
 245 ogy faces a notable absence of specific legal and ethical frameworks.
 246 Medical liability in cases of algorithmic error remains unresolved, with
 247 uncertainty regarding whether responsibility should fall on the clinician,
 248 the developer, the institution, or the software provider when AI fails
 249 in diagnosis or treatment. In addition, robust international standards

250 for the evaluation, validation, and integration of AI systems into med-
 251 ical practice are lacking. Technical challenges include limited platform
 252 interoperability, difficulties integrating AI into electronic health record
 253 systems, and the requirement for advanced hardware. The growing
 254 threat of cyberattacks further compromises data privacy and integrity.
 255 Substantial investment in infrastructure, training, and institutional sup-
 256 port is therefore essential to ensure safe and effective adoption.^{32,37}

257 **Existing gaps in AI implementation in cosmetic dermatology**

258 A significant gap exists between AI research conducted in controlled
 259 environments and its applicability in daily clinical practice. Most AI
 260 developments rely on retrospective studies involving limited or biased
 261 populations, without proper validation in real-world clinical settings.
 262 This creates a disconnect between the theoretical potential of AI and
 263 its practical utility for healthcare professionals. Furthermore, social
 264 health inequalities may be exacerbated if AI systems are trained on
 265 non-representative datasets. The exclusion of vulnerable populations,
 266 ethnic minorities, and diverse skin phototypes can lead to less accurate
 267 diagnoses and suboptimal treatment recommendations for these groups.
 268 Inclusive and representative model design and validation are therefore
 269 critical. Additionally, many clinicians either lack sufficient training in
 270 AI usage or remain sceptical of its reliability, further widening the gap
 271 between innovation and implementation.³⁷

272 **Discussion**

273 AI has emerged as a transformative tool in cosmetic dermatol-
 274 ogy, driving advances in image analysis, dermocosmetic development,
 275 and personalised treatment planning. Its application has enhanced dia-
 276 gnostic accuracy and optimised the identification of skin conditions and
 277 therapeutic strategies.

278 The development of ANN-based algorithms has proven particularly
 279 valuable in medical image evaluation, surpassing traditional methods
 280 in efficiency and objectivity. Models applied to high-frequency ultra-
 281 sound analysis and laser treatment response prediction have opened new
 282 avenues for individualized medicine.

283 Within the cosmetic industry, AI has revolutionised product develop-
 284 ment and personalisation. Systems such as PROVEN Beauty® integrate
 285 genetic and environmental data to formulate customised skincare rou-
 286 tines. Similarly, both clinical and home-based devices, including VISIA®
 287 and Opté®, have improved skin assessment and treatment monitoring,
 288 allowing for more precise product recommendations.

289 Nevertheless, challenges persist, including data bias, the need for
 290 rigorous clinical validation, and unequal access to these technologies
 291 across regions. As AI continues to evolve, its integration into cosmetic
 292 dermatology holds substantial promise for improving diagnosis, preven-
 293 tion, and treatment of skin disorders, ultimately transforming clinical
 294 practice through a more precise and evidence-based approach.

295 **Conclusions**

296 The concept of balance is fundamental: AI is not intended to replace
 297 human expertise, but rather to complement it. In cosmetic dermatology
 298 – where professional judgement is essential – AI functions as a support-
 299 ive tool, enhancing efficiency without replacing the specialist's role. Its
 300 integration can transform consultations, improve treatment planning,
 301 facilitate progress monitoring, and strengthen patient education. Ulti-
 302 mately, this synergy is expected to drive significant advances in the field
 303 of cosmetic dermatology.

304 **Conflict of interest**

305 The authors declare no conflict of interest.

Q3 305

306 References

- 307 1. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. *Gastrointest Endosc*. 2020;92:807–812, <http://dx.doi.org/10.1016/j.gie.2020.06.040>.
308
- 309 2. Nader K, Toprac P, Scott S, Baker S. Public understanding of artificial intelligence
310 through entertainment media. *AI Soc*. 2022, <http://dx.doi.org/10.1007/s00146-022-01427-w>.
311
- 312 3. Mijwil MM, Abtian RA. Artificial intelligence: a survey on evolution and future
313 trends. *Asian J Appl Sci*. 2021;9, <http://dx.doi.org/10.24203/ajas.v9i2.6589>.
314
- 315 4. Tong W, Hussain A, Bo WX, Maharjan S. Artificial intelligence for
316 vehicle-to-everything: a survey. *IEEE Access*. 2019;7:10823–10843,
317 <http://dx.doi.org/10.1109/ACCESS.2019.2891073>.
318
- 319 5. Kulkarni P, Mahadevappa M, Chilakamarri S. The emergence of artificial intelligence
320 in cardiology: current and future applications. *Curr Cardiol Rev*. 2022;18,
321 <http://dx.doi.org/10.2174/1573403X1766621119102220>, e191121198124.
322
- 323 6. Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning:
324 machine intelligence approach for drug discovery. *Mol Divers*. 2021;25:1315–1360,
325 <http://dx.doi.org/10.1007/s11030-021-10217-3>.
326
- 327 7. Phillips M, Marsden H, Jaffe W, et al. Assessment of accuracy of an artificial
328 intelligence algorithm to detect melanoma in images of skin lesions. *JAMA Netw Open*.
329 2019;2, <http://dx.doi.org/10.1001/jamanetworkopen.2019.13436>, e1913436.
330
- 331 8. Li Z, Koban KC, Schenck TL, et al. Artificial intelligence in dermatology
332 image analysis: current developments and future trends. *J Clin Med*. 2022;11,
333 <http://dx.doi.org/10.3390/jcm11226826>, 6826.
334
- 335 9. Hogarty DT, Su JC, Phan K, et al. Artificial intelligence in dermatology – where
336 we are and the way to the future: a review. *Am J Clin Dermatol*. 2020;21:41–47,
337 <http://dx.doi.org/10.1007/s40257-019-00462-6>.
338
- 339 10. Martorell A, Martin-Gorgojo A, Ríos-Viñuela E, et al. Inteligencia artificial en
340 dermatología: ¿amenaza o oportunidad? *Actas Dermo-Sifiliogr*. 2022;113:30–46,
341 <http://dx.doi.org/10.1016/j.ad.2021.07.003>.
342
- 343 11. Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms
344 based on traditional machine learning and deep learning. *Pattern Recognit Lett*.
345 2021;141:61–67, <http://dx.doi.org/10.1016/j.patrec.2020.07.042>.
346
- 347 12. Kabene S, Baadel S. Bioethics: a look at animal testing in
348 medicine and cosmetics in the UK. *J Med Ethics Hist Med*. 2019,
349 <http://dx.doi.org/10.18502/jmehm.v12i15.1875>.
350
- 351 13. Kalicińska J, Wiśnioska B, Polak S, et al. Artificial intelligence that
352 predicts sensitizing potential of cosmetic ingredients. *Int J Mol Sci*. 2023;24:6801,
353 <http://dx.doi.org/10.3390/ijms24076801>.
354
- 355 14. Zang Q, Paris M, Lehmann DM, et al. Prediction of skin sensitization
356 potency using machine learning approaches. *J Appl Toxicol*. 2017;37:792–805,
357 <http://dx.doi.org/10.1002/jat.3424>.
358
- 359 15. Strickland J, Zang Q, Paris M, et al. Multivariate models for prediction
360 of human skin sensitization hazard. *J Appl Toxicol*. 2017;37:347–360,
361 <http://dx.doi.org/10.1002/jat.3366>.
362
- 363 16. Li HL. Improved defined approaches for predicting skin sensitization hazard and
364 potency in humans. *ALTEX*. 2019, <http://dx.doi.org/10.14573/alTEX.1809191>.
365
- 366 17. Oztan Akturk S, Tugcu G, Sipahi H. Development of a QSAR model to predict
367 comedogenic potential of some cosmetic ingredients. *Comput Toxicol*. 2022;21,
368 <http://dx.doi.org/10.1016/j.comtox.2021.100207>, 100207.
369
- 370 18. Wilm A, García De Lomana M, Stork C, et al. Predicting the skin
371 sensitization potential of small molecules. *Pharmaceuticals*. 2021;14:790,
372 <http://dx.doi.org/10.3390/ph14080790>.
373
- 374 19. Vatiwutipong P, Vachmanus S, Noraset T, et al. Artificial intelligence in cosmetic
375 dermatology: a systematic literature review. *IEEE Access*. 2023;11:71407–71425,
376 <http://dx.doi.org/10.1109/ACCESS.2023.3295001>.
377
- 378 20. Yeh SJ, Lin JF, Chen BS. Multiple-molecule drug design using deep neural networks.
379 *Molecules*. 2021;26:3178, <http://dx.doi.org/10.3390/molecules26113178>.
380
- 381 21. Elder A, Ring C, Heitmiller K, et al. The role of artificial intelligence
382 in cosmetic dermatology. *J Cosmet Dermatol*. 2021;20:48–52,
383 <http://dx.doi.org/10.1111/jocd.13797>.
384
- 385 22. Liu X, Chen CH, Karvela M, et al. A DNA-based intelligent
386 expert system. *IEEE J Biomed Health Inform*. 2020;24:3276–3284,
387 <http://dx.doi.org/10.1109/JBHI.2020.2978667>.
388
- 389 23. Huang WS, Hong BK, Cheng WH, et al. A cloud-based intelligent
390 skin and scalp analysis system. In: *2018 IEEE VCIP*. IEEE; 2018:1–5,
391 <http://dx.doi.org/10.1109/VCIP.2018.8698739>.
392
- 393 24. Chirikhina E, Chirikhin A, Dewsbury-Ennis S, et al. Skin characterizations by contact
394 capacitive imaging. *Appl Sci*. 2021;11, <http://dx.doi.org/10.3390/app11188714>,
395 8714.
396
- 397 25. Koseki K, Kawasaki H, Atsugi T, et al. Assessment of skin barrier function
398 using topological data analysis. *NPJ Syst Biol Appl*. 2020;6:40,
399 <http://dx.doi.org/10.1038/s41540-020-00160-8>.
400
- 401 26. Vyas S, Meyerle J, Burlina P. Non-invasive estimation of skin thickness
402 using hyperspectral imaging. *Comput Biol Med*. 2015;57:173–181,
403 <http://dx.doi.org/10.1016/j.combimed.2014.12.010>.
404
- 405 27. Kothari A, Shah D, Soni T, et al. Cosmetic skin type classification using CNN. In: *2021
406 ICCNT*. IEEE; 2021:1–6, <http://dx.doi.org/10.1109/ICCCNT51525.2021.9580174>.
407
- 408 28. Lin TY, Tsai YT, Huang TS, et al. Exemplar-based freckle retouching
409 and skin tone adjustment. *Comput Graph*. 2019;78:54–63,
410 <http://dx.doi.org/10.1016/j.cag.2018.11.002>.
411
- 412 29. Shah SAA, Bennamoun M, Molton MK. Machine learning approaches
413 for prediction of facial rejuvenation. *IEEE Access*. 2019;7:23779–23787,
414 <http://dx.doi.org/10.1109/ACCESS.2019.2899379>.
415
- 416 30. Shah SAA, Bennamoun M, Molton M. A fully automatic framework for 3D facial
417 rejuvenation prediction. In: *2018 International Conference on Image Computing and
418 Vision in New Zealand (IVCNZ)*. IEEE; 2018:1–6.
419
- 420 31. Shi C, Jiang Z, Ma X, Luo Q. A personalized visual aid for selecting appearance-
421 enhancing products with long-term effects. In: *Proceedings of the 2022 CHI Conference
422 on Human Factors in Computing Systems*. IEEE; 2022:1–18.
423
- 424 32. Li Z, Koban KC, Schenck TL, Giunta RE, Li Q, Sun Y. Artificial intelligence in derma-
425 tology image analysis: current developments and future trends. *J Clin Med*. 2022;11,
426 <http://dx.doi.org/10.3390/jcm11226826>, 6826.
427
- 428 33. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities
429 and obstacles for deep learning in biology and medicine. *J R Soc Interface*. 2018;15,
430 <http://dx.doi.org/10.1098/rsif.2017.0387>.
431
- 432 34. Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, et al. Association
433 between surgical skin markings in dermoscopic images and diagnostic
434 performance of a deep learning convolutional neural network for melanoma recogni-
435 tion. *JAMA Dermatol*. 2019;155:1135–1141, <http://dx.doi.org/10.1001/jamadermatol.2019.1735>.
436
- 437 35. Haw WY, Al-Janabi A, Arents BWM, Afshar L, Exton LS, Grindlay D, et al. Global
438 Guidelines in Dermatology Mapping Project (GUIDEMAP): a scoping review
439 of dermatology clinical practice guidelines. *Br J Dermatol*. 2021;185:736–744,
440 <http://dx.doi.org/10.1111/bjdd.20428>.
441
- 442 36. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial
443 intelligence. *Lancet Oncol*. 2019;20:e253–e261, [http://dx.doi.org/10.1016/S1470-2045\(19\)30154-8](http://dx.doi.org/10.1016/S1470-2045(19)30154-8).
444
- 445 37. Ahmed MI, Spooner B, Isherwood J, Lane M, Orrock E, Dennison A. A systematic
446 review of the barriers to the implementation of artificial intelligence in healthcare.
447 *Cureus [Internet]*. 2023;15, <http://dx.doi.org/10.7759/cureus.46454>, e46454.
448