Journal Information
Vol. 101. Issue 5.
Pages 394-400 (June - July 2010)
Share
Share
Download PDF
More article options
Vol. 101. Issue 5.
Pages 394-400 (June - July 2010)
NoveltIes in dermatology
Full text access
New Therapies Targeting the Genetic Mutations Responsible for Different Types of Melanoma
Diferentes alteraciones genéticas causan diferentes melanomas y nuevas posibilidades terapéuticas
Visits
5492
R. Botella-Estrada
Corresponding author
rbotellaes@gmail.com

Corresponding author.
, O. Sanmartín Jiménez
Servicio de Dermatología, Instituto Valenciano de Oncología, Valencia, Spain
This item has received
Article information
Abstract

A number of molecular alterations have been described for melanoma. Melanomas with BRAF mutations tend to be located in areas of intermittent sun exposure, whereas melanomas with KIT mutations mostly appear in acral areas, the mucosa, and areas of chronic sun exposure. Sorafenib, a BRAF inhibitor, has a cytostatic effect on most melanomas with mutations affecting the mitogen-activated protein kinase (MAPK) pathway, and is also capable of triggering apoptosis in a small subgroup of these melanomas. By inhibiting KIT, imatinib has a cytostatic and cytotoxic effect on melanomas with KIT mutations, and probably has the same effect on another subgroup of melanomas with other as yet imperfectly understood KIT mutations. For therapy to be effective, agents should be selected according to the pathways associated with the genetic mutations present in the melanoma.

Keywords:
Melanoma
MAPK
BRAF
KIT
Sorafenib
Imatinib
Resumen

Se han descrito diversas alteraciones moleculares en el melanoma. Los melanomas con mutaciones de BRAF suelen localizarse en zonas con exposición solar intermitente mientras que las alteraciones genéticas de KIT ocurren con mayor frecuencia en los melanomas acrales, mucosos y en los que se localizan en áreas con exposición solar crónica. Sorafenib, un inhibidor de BRAF, tiene un efecto citostático en la mayoría de los melanomas con mutaciones en la vía MAP cinasa, aunque en un pequeño subgrupo de estos melanomas es también capaz de promover la apoptosis. Imatinib, a través de la inhibición de KIT, posee un efecto citostático y citotóxico en aquellos melanomas con mutaciones de KIT, y probablemente en otro subgrupo de melanomas con otras alteraciones genéticas de KIT aún no perfectamente definidas. Para que estos tratamientos sean efectivos es imprescindible que se hayan seleccionado adecuadamente los pacientes, estableciéndose la existencia de alteraciones genéticas en la vía sobre la que se va a actuar.

Palabras clave:
Melanoma
MAPK
BRAF
KIT
Sorafenib
Imatinib
Full text is only aviable in PDF
References
[1.]
H.B. Neuman, A. Patel, N. Ishill, C. Hanlon, M.S. Brady, A.C. Halpern, et al.
A single-institution validation of the AJCC staging system for stage IV melanoma.
Ann Surg Oncol, 15 (2008), pp. 2034-2041
[2.]
C.M. Balch, S.J. Soong, J.E. Gershenwald, J.F. Thompson, D.S. Reintgen, N. Cascinelli, et al.
Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system.
J Clin Oncol, 19 (2001), pp. 3622-3634
[3.]
Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, et al. SEER Cancer Statistics Review, 1975-2002. Bethesda MD: National Cancer Institute. Available from: http://www.seer.cancer.gov/csr/1975_2002
[4.]
G. Argenziano, I. Zalaudek, G. Ferrara.
Fast-growing and slow-growing melanomas.
Arch Dermatol, 143 (2007), pp. 802-803
[5.]
L. Chin, L.A. Garraway, D.E. Fisher.
Malignant melanoma: genetics and therapeutics in the genomic era.
Genes Dev, 20 (2006), pp. 2149-2182
[6.]
A.J. Miller, M.C. Mihm.
Melanoma.
N Engl J Med, 355 (2006), pp. 51-55
[7.]
K. Omholt, A. Platz, L. Kanter, U. Ringborg, J. Hansson.
NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression.
Clin Cancer Res, 9 (2003), pp. 6483-6488
[8.]
P.M. Pollock, U.L. Harper, K.S. Hansen, L.M. Yudt, M. Stark, C.M. Robbins, et al.
High frequency of BRAF mutations in nevi.
Nat Genet, 33 (2003), pp. 19-20
[9.]
J.S. Sebolt-Leopold, R. Herrera.
Targeting the mitogen activated protein kinase cascade to treat cancer.
Nature Rev Cancer, 4 (2004), pp. 937-947
[10.]
C. Michaloglou, L.C. Vredeveld, M.S. Soengas, C. Denoyelle, T. Kuilman, C.M. van der Horst, et al.
BRAFE600-associated senescencelike cell cycle arrest of human naevi.
Nature, 436 (2005), pp. 720-724
[11.]
J. Aitken, J. Welch, D. Duffy, A. Milligan, A. Green, N. Martin, et al.
CDKN2A variants in a population-based sample of Queensland families with melanoma.
J Natl Cancer Inst, 91 (1999), pp. 446-452
[12.]
J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang, et al.
PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.
Science, 275 (1997), pp. 1943-1947
[13.]
V.K. Goel, A.J. Lazar, C.L. Warneke, M.S. Redston, F.G. Haluska.
Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma.
J Invest Dermatol, 126 (2006), pp. 154-160
[14.]
P. Rodríguez-Viciana, O. Tetsu, W.E. Tidyman, A.L. Estep, B.A. Conger, M.S. Cruz, et al.
Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome.
Science, 311 (2006), pp. 1287-1290
[15.]
J.A. Curtin, J. Fridlyand, T. Kageshita, H.N. Patel, K.J. Busam, H. Kutzner, et al.
Distinct sets of genetic alterations in melanoma.
N Engl J Med, 353 (2005), pp. 2135-2147
[16.]
A. Viros, J. Fridlyand, J. Bauer, K. Lasithiotakis, C. Garbe, D. Pinkel, et al.
Improving melanoma classification by integrating genetic and morphologic features.
PLoS Medicine, 5 (2008), pp. 941-952
[17.]
S.R. Hingorani, M.A. Jacobetz, G.P. Robertson, M. Herlyn, D.A. Tuveson.
Suppression of BRAF (V599E) in human melanoma abrogates transformation.
Cancer Res, 63 (2003), pp. 5198-5202
[18.]
K.P. Hoeflich, D.C. Gray, M.T. Eby, J.Y. Tien, L. Wong, J. Bower, et al.
Oncogenic BRAF is required for tumor growth and maintenance in melanoma models.
Cancer Res, 66 (2006), pp. 999-1006
[19.]
E. Lazar-Molnar, H. Hegyesi, S. Toth, A. Falus.
Autocrine and paracrine regulation by cytokines and growth factors in melanoma.
Cytokine, 12 (2000), pp. 547-554
[20.]
Y. Chudnovsky, A.E. Adams, P.B. Robbins, Q. Lin, P.A. Khavari.
Use of human tissue to assess the oncogenic activity of melanomaassociated mutations.
Nat Genet, 37 (2005), pp. 745-749
[21.]
D. Strumberg, J.W. Clark, A. Awada, M.J. Moore, H. Richly, A. Hendlisz, et al.
Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors.
Oncologist, 12 (2007), pp. 426-437
[22.]
K.T. Flaherty, M. Redlinger, L.M. Shchucter, C.D. Lathia, B.L. Weber, P.J. O’Dwyer.
Phase I/II, pharmacokinetic and pharmacodynamic trial of BAY 43-9006 alone in patients with metastatic melanoma.
J Clin Oncol, 23 (2005), pp. 3037
[23.]
T. Eisen, T. Ahmad, K.T. Flaherty, M. Gore, S. Kaye, R. Marais, et al.
Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis.
Br J Cancer, 95 (2006), pp. 581-586
[24.]
D.F. McDermott, J.A. Sosman, R. Gonzalez, F.S. Hodi, G.P. Linette, J. Richards, et al.
Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: A report from the 11715 Study Group.
J Clin Oncol, 26 (2008), pp. 2178-2185
[25.]
K.S. Smalley, M. Xiao, J. Villanueva, T.K. Nguyen, K.T. Flaherty, R. Letrero, et al.
CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations.
Oncogene, 28 (2009), pp. 85-94
[26.]
P.T. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, et al.
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF.
Cell, 116 (2004), pp. 855-867
[27.]
N. Dumaz, R. Hayward, J. Martin, L. Ogilvie, D. Hedley, J.A. Curtin, et al.
In melanoma, RAS mutations are accompanied by switching signalling from BRAF to CRAF and disrupted cyclic AMP signaling.
Cancer Res, 66 (2006), pp. 9483-9491
[28.]
K.S.M. Smalley, K.L. Nathanson, K.T. Flaherty.
Genetic subgrouping of melanoma reveals new opportunities for targeted therapy.
Cancer Res, 69 (2009), pp. 3241-3244
[29.]
K.S. Smalley, N.K. Haass, P.A. Brafford, M. Lioni, K.T. Flaherty, M. Herlyn.
Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases.
Mol Cancer Ther, 5 (2006), pp. 1136-1144
[30.]
M.A. Tran, R. Gowda, A. Sharma, E.J. Park, J. Adair, M. Kester, et al.
Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development.
Cancer Res, 68 (2008), pp. 7638-7649
[31.]
K.G. Lasithiotakis, T.W. Sinnberg, B. Schittek, K.T. Flaherty, D. Kulms, E. Maczey, et al.
Combined inhibition of MAPK and mTOR signalling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells.
J Invest Dermatol, 128 (2008), pp. 2013-2023
[32.]
S. Ugurel, R. Hildenbrand, A. Zimpfer, P. La Rosée, P. Paschka, A. Sucker, et al.
Lack of clinical efficacy of imatinib in metastatic melanoma.
Br J Cancer, 92 (2005), pp. 1398-1405
[33.]
K. Wyman, M.B. Atkins, V. Prieto, O. Eton, D.F. McDermott, F. Hubbard, et al.
Multicenter phase II trial of high-dose imatinib mesylate in metastatic melanoma: Significant toxicity with no clinical efficacy.
Cancer, 106 (2006), pp. 2005-2011
[34.]
J.A. Curtin, K. Busam, D. Pinkel, B.C. Bastian.
Somatic activation of KIT in distinct subtypes of melanoma.
J Clin Oncol, 24 (2006), pp. 4340-4346
[35.]
J. Lutzky, J. Bauer, B.C. Bastian.
Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation.
Pigment Cell Melanoma Res, 21 (2008), pp. 492-493
[36.]
F.S. Hodi, P. Friedlander, C. Corless.
Major response to imatinib mesylate in KIT-mutated melanoma.
J Clin Oncol, 26 (2008), pp. 2046-2051
[37.]
X. Jiang, J. Zhou, N.K. Yuen, C.L. Corless, M.C. Heinrich, J.A. Fletcher, et al.
Imatinib targeting of KIT-mutant oncoprotein in melanoma.
Clin Cancer Res, 14 (2008), pp. 7726-7732
[38.]
K.S.M. Smalley, R. Contractor, T.K. Nguyen, M. Xiao, R. Edwards, V. Muthusamy, et al.
Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression.
Cancer Res, 68 (2008), pp. 5743-5752
[39.]
.C.A. Torres-Cabala, W.L. Wang, J. Trent, D. Yang, S. Chen, J. Galbincea, et al.
Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acrallentiginous/mucosal type.
Mod Pathol, 22 (2009), pp. 1446-1456
[40.]
J.M. Wu, H. Álvarez, P. García, P.L. Rojas, G. Wong, A. Maitra, et al.
Melanoma hyperpigmentation is strongly associated with KIT alterations.
Am J Dermatopathol, 31 (2009), pp. 619-625
[41.]
Z.Q. Wang, L. Si, Q. Tang, D. Lin, Z. Fu, J. Zhang, et al.
Gain-offunction mutation of KIT ligand on melanin synthesis causes familial progressive hyperpigmentation.
Am J Hum Genet, 84 (2009), pp. 672-677
[42.]
K.B. Kim, O. Eton, D.W. Davis, M.L. Frazier, D.J. McConkey, A.H. Diwan, et al.
Phase II trial of imatinib mesylate in patients with metastatic melanoma.
Br J Cancer, 99 (2008), pp. 734-740
[43.]
C. All-Ericsson, L. Girnita, A. Müller-Brunotte, B. Brodin, S. Seregard, A. Ostman, et al.
c-Kit–dependent growth of uveal melanoma cells: A potential therapeutic target?.
Invest Ophthalmol Vis Sci, 45 (2004), pp. 2075-2082
[44.]
J.C. Becker, E.B. Bröcker, D. Schadendorf, S. Ugurel.
Imatinib in melanoma: a selective treatment option based on KIT mutation status?.
J Clin Oncol, 25 (2007), pp. e9
Copyright © 2010. Academia Española de Dermatología y Venereología and Elsevier España, S.L.
Idiomas
Actas Dermo-Sifiliográficas
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?